关于python:pythonnumpy03创建特定形式数组

74次阅读

共计 9534 个字符,预计需要花费 24 分钟才能阅读完成。

1.np.arange 创立指定步长

函数定义:

def arange(start=None, *args, **kwargs): # real signature unknown; NOTE: unreliably restored from __doc__ 
    """
    arange([start,] stop[, step,], dtype=None)
    
        Return evenly spaced values within a given interval.
    
        Values are generated within the half-open interval ``[start, stop)``
        (in other words, the interval including `start` but excluding `stop`).
        For integer arguments the function is equivalent to the Python built-in
        `range` function, but returns an ndarray rather than a list.
    
        When using a non-integer step, such as 0.1, the results will often not
        be consistent.  It is better to use `numpy.linspace` for these cases.
    
        Parameters
        ----------
        start : number, optional
            Start of interval.  The interval includes this value.  The default
            start value is 0.
        stop : number
            End of interval.  The interval does not include this value, except
            in some cases where `step` is not an integer and floating point
            round-off affects the length of `out`.
        step : number, optional
            Spacing between values.  For any output `out`, this is the distance
            between two adjacent values, ``out[i+1] - out[i]``.  The default
            step size is 1.  If `step` is specified as a position argument,
            `start` must also be given.
        dtype : dtype
            The type of the output array.  If `dtype` is not given, infer the data
            type from the other input arguments.
    
        Returns
        -------
        arange : ndarray
            Array of evenly spaced values.
    
            For floating point arguments, the length of the result is
            ``ceil((stop - start)/step)``.  Because of floating point overflow,
            this rule may result in the last element of `out` being greater
            than `stop`.
    
        See Also
        --------
        numpy.linspace : Evenly spaced numbers with careful handling of endpoints.
        numpy.ogrid: Arrays of evenly spaced numbers in N-dimensions.
        numpy.mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions.
    """
    pass

阐明:numpy.arange函数和常常应用的 range 函数十分的相似,只是多减少了一个 dtype 参数,dtype 参数的作用和 numpy.array 外面介绍的作用是统一的。

range()和 arange()只所以这么灵便,一方面是 python 的灵便的参数机制;另一方面是对接管的参数数目进行判断,依据参数数目的不同执行不同的操作。

示例代码:

# 指定起点
a = np.arange(10)
print(a)
print('--' * 20)

# 指定终点、起点
b = np.arange(1, 10)
print(b)
print('--' * 20)

# 指定终点、起点、步长
c = np.arange(1, 10, 2)
print(c)
print('--' * 20)

# 指定终点、起点、步长、dtype 类型
d = np.arange(1, 10, 2, float)
print(d)
print('--' * 20)

# 小数的状况也能应用 numpy,理论状况这样应用的比拟少
e = np.arange(0.1, 1.0, 0.1, float)
print(e)

运行后果:

[0 1 2 3 4 5 6 7 8 9]
----------------------------------------
[1 2 3 4 5 6 7 8 9]
----------------------------------------
[1 3 5 7 9]
----------------------------------------
[1. 3. 5. 7. 9.]
----------------------------------------
[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]

2.np.random.random 创立随机数

用于创立值范畴在 [0.0, 1.0) 区间的随机数组

函数定义:

def random(size=None): # real signature unknown; restored from __doc__
    """
    random(size=None)
    
            Return random floats in the half-open interval [0.0, 1.0). Alias for
            `random_sample` to ease forward-porting to the new random API.
    """
    pass

通过介绍能够晓得,random 是 random_sample 的别名。咱们再来看一下 random_sample 函数。

def random_sample(size=None): # real signature unknown; restored from __doc__
    """
    random_sample(size=None)
    
            Return random floats in the half-open interval [0.0, 1.0).
    
            Results are from the "continuous uniform" distribution over the
            stated interval.  To sample :math:`Unif[a, b), b > a` multiply
            the output of `random_sample` by `(b-a)` and add `a`::
    
              (b - a) * random_sample() + a
    
            .. note::
                New code should use the ``random`` method of a ``default_rng()``
                instance instead; see `random-quick-start`.
    
            Parameters
            ----------
            size : int or tuple of ints, optional
                Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
                ``m * n * k`` samples are drawn.  Default is None, in which case a
                single value is returned.
    
            Returns
            -------
            out : float or ndarray of floats
                Array of random floats of shape `size` (unless ``size=None``, in which
                case a single float is returned).
   
    """
    pass

示例代码:

import numpy as np

a1 = np.random.random(size=1)
a2 = np.random.random(size=(1,))
a3 = np.random.random_sample(size=(1,))
print(a1)
print("~~" * 10)
print(a2)
print("~~" * 10)
print(a3)
print('--' * 20)

b1 = np.random.random(size=(2, 3))
b2 = np.random.random_sample(size=(2, 3))
print(b1)
print("~~" * 10)
print(b2)
print("--" * 20)

运行后果:

[0.12406671]

[0.51463238]

[0.89463238]
----------------------------------------
[[0.10907993 0.16789092 0.43668195]
 [0.79106801 0.22137333 0.01017769]]

[[0.65803265 0.11789976 0.56492191]

[0.74975911 0.09096749 0.05589122]]


程序阐明:通过运行后果咱们能够看到 a1、a2、a3 这三个构造统一,阐明传递参数最终是以元组的模式进行解析的,另外一个就是 random 和 random_sample 成果统一。> 为了程序规规范性,倡议创立 ndarray 数组过程指定参数 size 以元组的模式传递。### 3.np.random.randint 创立随机整数

次要用于创立指定区间范畴的整数数据类型数组

函数定义:

def randint(low, high=None, size=None, dtype=None): # real signature unknown; restored from doc

"""
randint(low, high=None, size=None, dtype=int)

        Return random integers from `low` (inclusive) to `high` (exclusive).

        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).

        .. note::
            New code should use the ``integers`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is int.

            .. versionadded:: 1.11.0

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided. 
"""
pass

阐明:1. 参数 `low` 和参数 `high` 应用相似于 random 函数的应用办法
2. size 用法和下面 random 函数介绍的一样,倡议应用元组
3. dtype 函数用于指定数据类型,留神:** 因为 randint 自身曾经指定整数类型的范畴,所以不能指定非整形数据类型。**

示例代码:

import numpy as np

指定起点

a1 = np.random.randint(10)
print(a1)
print(‘–‘ * 20)

指定终点、起点

b1 = np.random.randint(1, 10)
print(b1)
print(‘–‘ * 20)

指定终点、起点、大小

c1 = np.random.randint(1, 10, size=(2, 3))
print(c1)
print(‘–‘ * 20)

指定终点、起点、大小、数据类型

d1 = np.random.randint(1, 10, size=(2, 3), dtype=np.uint8)
print(d1)
print(‘–‘ * 20)


运行后果:

9

9

[[9 8 6]

[1 1 5]]

[[6 3 8]

[9 9 5]]




### 4. 创立正态分布数组

#### 4.1 np.random.randn 创立规范正太散布

用于创立符合标准正态分布(冀望为 0,方差为 1)

函数定义

def randn(*dn): # known case of numpy.random.mtrand.randn

"""
randn(d0, d1, ..., dn)

        Return a sample (or samples) from the "standard normal" distribution.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `standard_normal`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        .. note::
            New code should use the ``standard_normal`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        If positive int_like arguments are provided, `randn` generates an array
        of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1. A single float randomly sampled
        from the distribution is returned if no argument is provided.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.
"""
pass



#### 4.2 np.random.common 指定方差和冀望

用于创立指定冀望和方差正态分布数据的数组

函数定义

def normal(loc=0.0, scale=1.0, size=None): # real signature unknown; restored from doc

"""
normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        .. note::
            New code should use the ``normal`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.
        Generator.normal: which should be used for new code.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2}}
                         e^{- \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        normal is more likely to return samples lying close to the mean, rather
        than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.
"""
pass



示例代码:

import numpy as np

a1 = np.random.randn(2)
a2 = np.random.normal(0, 1, 2)
print(a1)
print(‘~~’ * 10)
print(a2)
print(‘–‘ * 20)

b1 = np.random.randn(2, 3)
b2 = np.random.normal(0, 1, (2, 3))
print(b1)
print(‘~~’ * 10)
print(b2)


运行后果:

[-0.08968467 0.19935229]

[-2.70345057  0.31810813]
----------------------------------------
[[0.26098236  0.59379753 -0.70686308]
 [-0.78541554 -0.27910239 -0.15193886]]

[[-0.92466689 0.580677 0.80772163]
[2.17103711 -0.11340317 -0.06021829]]


---
> 备注:> 更多精彩博客,请拜访:[聂发俊的技术博客](http://www.niefajun.com/)  博客内容批改和更新, 只更新集体博客。> 对应视频教程,请拜访:[python400](https://www.bilibili.com/video/BV1WE411j7p3)  
> 残缺 markdown 笔记,请拜访: [python400_learn_github](https://github.com/niefajun/python400_learn)

正文完
 0