共计 9088 个字符,预计需要花费 23 分钟才能阅读完成。
概要
本提案定义了一种形象基类(ABC)(PEP 3119)的层次结构,用来示意相似数字(number-like)的类。它提出了一个 Number :> Complex :> Real :> Rational :> Integral 的层次结构,其中 A :> B 示意“A 是 B 的超类”。该层次结构受到了 Scheme 的数字塔(numeric tower)启发。(译注:数字 – 复数 – 实数 – 有理数 – 整数)
基本原理
以数字作为参数的函数应该可能断定这些数字的属性,并且依据数字的类型,确定是否以及何时进行重载,即基于参数的类型,函数应该是可重载的。
例如,切片要求其参数为 Integrals,而 math 模块中的函数要求其参数为 Real。
标准
本 PEP 规定了一组形象基类(Abstract Base Class),并提出了一个实现某些办法的通用策略。它应用了来自于 PEP 3119 的术语,然而该层次结构旨在对特定类集的任何零碎办法都有意义。
规范库中的类型查看应该应用这些类,而不是具体的内置类型。
数值类
咱们从 Number 类开始,它是人们设想的数字类型的含糊概念。此类仅用于重载;它不提供任何操作。
class Number(metaclass=ABCMeta): pass
大多数复数(complex number)的实现都是可散列的,然而如果你须要依赖它,则必须明确地查看:此层次结构反对可变的数。
class Complex(Number):
"""Complex defines the operations that work on the builtin complex type.
In short, those are: conversion to complex, bool(), .real, .imag,
+, -, *, /, **, abs(), .conjugate(), ==, and !=.
If it is given heterogenous arguments, and doesn't have special
knowledge about them, it should fall back to the builtin complex
type as described below.
"""
@abstractmethod
def __complex__(self):
"""Return a builtin complex instance."""
def __bool__(self):
"""True if self != 0."""
return self != 0
@abstractproperty
def real(self):
"""Retrieve the real component of this number.
This should subclass Real.
"""
raise NotImplementedError
@abstractproperty
def imag(self):
"""Retrieve the real component of this number.
This should subclass Real.
"""
raise NotImplementedError
@abstractmethod
def __add__(self, other):
raise NotImplementedError
@abstractmethod
def __radd__(self, other):
raise NotImplementedError
@abstractmethod
def __neg__(self):
raise NotImplementedError
def __pos__(self):
"""Coerces self to whatever class defines the method."""
raise NotImplementedError
def __sub__(self, other):
return self + -other
def __rsub__(self, other):
return -self + other
@abstractmethod
def __mul__(self, other):
raise NotImplementedError
@abstractmethod
def __rmul__(self, other):
raise NotImplementedError
@abstractmethod
def __div__(self, other):
"""a/b; should promote to float or complex when necessary."""
raise NotImplementedError
@abstractmethod
def __rdiv__(self, other):
raise NotImplementedError
@abstractmethod
def __pow__(self, exponent):
"""a**b; should promote to float or complex when necessary."""
raise NotImplementedError
@abstractmethod
def __rpow__(self, base):
raise NotImplementedError
@abstractmethod
def __abs__(self):
"""Returns the Real distance from 0."""
raise NotImplementedError
@abstractmethod
def conjugate(self):
"""(x+y*i).conjugate() returns (x-y*i)."""
raise NotImplementedError
@abstractmethod
def __eq__(self, other):
raise NotImplementedError
# __ne__ is inherited from object and negates whatever __eq__ does.
Real 形象基类示意在实数轴上的值,并且反对内置的 float 的操作。实数(Real number)是齐全有序的,除了 NaN(本 PEP 基本上不思考它)。
class Real(Complex):
"""To Complex, Real adds the operations that work on real numbers.
In short, those are: conversion to float, trunc(), math.floor(),
math.ceil(), round(), divmod(), //, %, <, <=, >, and >=.
Real also provides defaults for some of the derived operations.
"""# XXX What to do about the __int__ implementation that's
# currently present on float? Get rid of it?
@abstractmethod
def __float__(self):
"""Any Real can be converted to a native float object."""
raise NotImplementedError
@abstractmethod
def __trunc__(self):
"""Truncates self to an Integral.
Returns an Integral i such that:
* i>=0 iff self>0;
* abs(i) <= abs(self);
* for any Integral j satisfying the first two conditions,
abs(i) >= abs(j) [i.e. i has "maximal" abs among those].
i.e. "truncate towards 0".
"""
raise NotImplementedError
@abstractmethod
def __floor__(self):
"""Finds the greatest Integral <= self."""
raise NotImplementedError
@abstractmethod
def __ceil__(self):
"""Finds the least Integral >= self."""
raise NotImplementedError
@abstractmethod
def __round__(self, ndigits:Integral=None):
"""Rounds self to ndigits decimal places, defaulting to 0.
If ndigits is omitted or None, returns an Integral,
otherwise returns a Real, preferably of the same type as
self. Types may choose which direction to round half. For
example, float rounds half toward even.
"""
raise NotImplementedError
def __divmod__(self, other):
"""The pair (self // other, self % other).
Sometimes this can be computed faster than the pair of
operations.
"""
return (self // other, self % other)
def __rdivmod__(self, other):
"""The pair (self // other, self % other).
Sometimes this can be computed faster than the pair of
operations.
"""
return (other // self, other % self)
@abstractmethod
def __floordiv__(self, other):
"""The floor() of self/other. Integral."""
raise NotImplementedError
@abstractmethod
def __rfloordiv__(self, other):
"""The floor() of other/self."""
raise NotImplementedError
@abstractmethod
def __mod__(self, other):
"""self % other
See
https://mail.python.org/pipermail/python-3000/2006-May/001735.html
and consider using "self/other - trunc(self/other)"
instead if you're worried about round-off errors."""
raise NotImplementedError
@abstractmethod
def __rmod__(self, other):
"""other % self"""
raise NotImplementedError
@abstractmethod
def __lt__(self, other):
"""< on Reals defines a total ordering, except perhaps for NaN."""
raise NotImplementedError
@abstractmethod
def __le__(self, other):
raise NotImplementedError
# __gt__ and __ge__ are automatically done by reversing the arguments.
# (But __le__ is not computed as the opposite of __gt__!)
# Concrete implementations of Complex abstract methods.
# Subclasses may override these, but don't have to.
def __complex__(self):
return complex(float(self))
@property
def real(self):
return +self
@property
def imag(self):
return 0
def conjugate(self):
"""Conjugate is a no-op for Reals."""
return +self
咱们应该整顿 Demo/classes/Rat.py,并把它晋升为 Rational.py 退出规范库。而后它将实现有理数(Rational)形象基类。
class Rational(Real, Exact):
""".numerator and .denominator should be in lowest terms."""
@abstractproperty
def numerator(self):
raise NotImplementedError
@abstractproperty
def denominator(self):
raise NotImplementedError
# Concrete implementation of Real's conversion to float.
# (This invokes Integer.__div__().)
def __float__(self):
return self.numerator / self.denominator
最初是整数类:
class Integral(Rational):
"""Integral adds a conversion to int and the bit-string operations."""
@abstractmethod
def __int__(self):
raise NotImplementedError
def __index__(self):
"""__index__() exists because float has __int__()."""
return int(self)
def __lshift__(self, other):
return int(self) << int(other)
def __rlshift__(self, other):
return int(other) << int(self)
def __rshift__(self, other):
return int(self) >> int(other)
def __rrshift__(self, other):
return int(other) >> int(self)
def __and__(self, other):
return int(self) & int(other)
def __rand__(self, other):
return int(other) & int(self)
def __xor__(self, other):
return int(self) ^ int(other)
def __rxor__(self, other):
return int(other) ^ int(self)
def __or__(self, other):
return int(self) | int(other)
def __ror__(self, other):
return int(other) | int(self)
def __invert__(self):
return ~int(self)
# Concrete implementations of Rational and Real abstract methods.
def __float__(self):
"""float(self) == float(int(self))"""
return float(int(self))
@property
def numerator(self):
"""Integers are their own numerators."""
return +self
@property
def denominator(self):
"""Integers have a denominator of 1."""
return 1
运算及__magic__办法的变更
为了反对从 float 到 int(确切地说,从 Real 到 Integral)的精度膨胀,咱们提出了以下新的 magic 办法,能够从相应的库函数中调用。所有这些办法都返回 Intergral 而不是 Real。
- __trunc__(self):在新的内置 trunc(x) 里调用,它返回从 0 到 x 之间的最靠近 x 的 Integral。
- __floor__(self):在 math.floor(x) 里调用,返回最大的 Integral <= x。
- __ceil__(self):在 math.ceil(x) 里调用,返回最小的 Integral > = x。
- __round__(self):在 round(x) 里调用,返回最靠近 x 的 Integral,依据选定的类型作四舍五入。浮点数将从 3.0 版本起改为向偶数端四舍五入。(译注:round(2.5) 等于 2,round(3.5) 等于 4)。它还有一个带两参数的版本__round__(self, ndigits),被 round(x, ndigits) 调用,但返回的是一个 Real。
在 2.6 版本中,math.floor、math.ceil 和 round 将持续返回浮点数。
float 的 int() 转换等效于 trunc()。一般而言,int() 的转换首先会尝试__int__(),如果找不到,再尝试__trunc__()。
complex.__{divmod, mod, floordiv, int, float}__ 也隐没了。提供一个好的谬误音讯来帮忙困惑的搬运工会很好,但更重要的是不呈现在 help(complex) 中。
给类型实现者的阐明
实现者应该留神使相等的数字相等,并将它们散列为雷同的值。如果实数有两个不同的扩大,这可能会变得奥妙。例如,一个复数类型能够像这样正当地实现 hash():
def __hash__(self):
return hash(complex(self))
但应留神所有超出了内置复数范畴或精度的值。
增加更多数字形象基类
当然,数字还可能有更多的形象基类,如果排除了增加这些数字的可能性,这会是一个蹩脚的等级体系。你能够应用以下办法在 Complex 和 Real 之间增加 MyFoo:
class MyFoo(Complex): ...
MyFoo.register(Real)
实现算术运算
咱们心愿实现算术运算,使得在混合模式的运算时,要么调用者晓得如何解决两种参数类型,要么将两者都转换为最靠近的内置类型,并以此进行操作。
对于 Integral 的子类型,这意味着__add__和__radd__应该被定义为:
class MyIntegral(Integral):
def __add__(self, other):
if isinstance(other, MyIntegral):
return do_my_adding_stuff(self, other)
elif isinstance(other, OtherTypeIKnowAbout):
return do_my_other_adding_stuff(self, other)
else:
return NotImplemented
def __radd__(self, other):
if isinstance(other, MyIntegral):
return do_my_adding_stuff(other, self)
elif isinstance(other, OtherTypeIKnowAbout):
return do_my_other_adding_stuff(other, self)
elif isinstance(other, Integral):
return int(other) + int(self)
elif isinstance(other, Real):
return float(other) + float(self)
elif isinstance(other, Complex):
return complex(other) + complex(self)
else:
return NotImplemented
对 Complex 的子类进行混合类型操作有 5 种不同的状况。我把以上所有未蕴含 MyIntegral 和 OtherTypeIKnowAbout 的代码称为“样板”。
a 是 A 的实例,它是 Complex(a : A <: Complex) 的子类型,还有 b : B <: Complex。对于 a + b,我这么思考:
- 如果 A 定义了承受 b 的__add__,那么没问题。
- 如果 A 走到了样板代码分支(译注:else 分支),还从__add__返回一个值的话,那么咱们就错过了为 B 定义一个更智能的__radd__的可能性,因而样板应该从__add__返回 NotImplemented。(或者 A 能够不实现__add__)
- 而后 B 的__radd__的机会来了。如果它承受 a,那么没问题。
- 如果它走到样板分支上,就没有方法了,因而须要有默认的实现。
- 如果 B <: A,则 Python 会在 A.__ add__之前尝试 B.__ radd__。这也能够,因为它是基于 A 而实现的,因而能够在委派给 Complex 之前解决这些实例。
如果 A <: Complex 和 B <: Real 没有其它关系,则适合的共享操作是内置复数的操作,它们的__radd__都在其中,因而 a + b == b + a。(译注:这几段没看太明确,可能译得不对)
被回绝的计划
本 PEP 的初始版本定义了一个被 Haskell Numeric Prelude 所启发的代数层次结构,其中包含 MonoidUnderPlus、AdditiveGroup、Ring 和 Field,并在失去数字之前,还有其它几种可能的代数类型。
咱们本来心愿这对应用向量和矩阵的人有用,但 NumPy 社区的确对此并不感兴趣,另外咱们还遇到了一个问题,即使 x 是 X <: MonoidUnderPlus 的实例,而且 y 是 Y < : MonoidUnderPlus 的实例,x + y 可能还是行不通。
而后,咱们为数字提供了更多的分支构造,包含高斯整数(Gaussian Integer)和 Z/nZ 之类的货色,它们能够是 Complex,但不肯定反对“除”之类的操作。
社区认为这对 Python 来说太简单了,因而我当初放大了提案的范畴,使其更靠近于 Scheme 数字塔。
以上就是本次分享的所有内容,想要理解更多 python 常识欢送返回公众号:Python 编程学习圈,发送“J”即可收费获取,每日干货分享