关于python:Python-深度学习6PyTorch-卷积神经网络

41次阅读

共计 2329 个字符,预计需要花费 6 分钟才能阅读完成。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

下载训练集

train_dataset = datasets.MNIST(root=’./’,

                           train=True,
                           transform=transforms.ToTensor(),
                           download=True)

下载测试集

test_dataset = datasets.MNIST(root=’./’,

                          train=False,
                          transform=transforms.ToTensor(),
                          download=True)

批次大小

batch_size = 64

装载训练集

train_loader = DataLoader(dataset=train_dataset,

                      batch_size=batch_size,
                      shuffle=True)

装载测试集

test_loader = DataLoader(dataset=test_dataset,

                     batch_size=batch_size,
                     shuffle=True)

for i, data in enumerate(train_loader):

# 取得数据和对应的标签
inputs, labels = data
print(inputs.shape)
print(labels.shape)
break

定义网络结构

class Net(nn.Module):

def __init__(self):
    super(Net, self).__init__()
    # 卷积层 1
    # Conv2d 参数 1:[金属期货](https://www.gendan5.com/cf/mf.html) 输出通道数,黑白图片为 1,黑白为 3 参数 2:输入通道数,生成 32 个特色图 参数 3:5* 5 卷积窗口 参数 4:步长 1 参数 5:padding 补 2 圈 0(3* 3 卷积窗口填充 1 圈 0,5* 5 填充 2 圈 0)# 应用 ReLU 激活函数 池化窗口大小 2 *2,步长 2
    self.conv1 = nn.Sequential(nn.Conv2d(1, 32, 5, 1, 2), nn.ReLU(), nn.MaxPool2d(2, 2))
    # 卷积层 2 输出 32 个特色图 输入 64 个特色图
    self.conv2 = nn.Sequential(nn.Conv2d(32, 64, 5, 1, 2), nn.ReLU(), nn.MaxPool2d(2, 2))
    # 全连贯层 1 输出 64*7*7(原先为 28,每次池化 /2),1000
    self.fc1 = nn.Sequential(nn.Linear(64 * 7 * 7, 1000), nn.Dropout(p=0.4), nn.ReLU())
    # 全连贯层 2 输入 10 个分类,并转化为概率
    self.fc2 = nn.Sequential(nn.Linear(1000, 10), nn.Softmax(dim=1))
def forward(self, x):
    # 卷积层应用 4 维的数据
    # 批次数量 64 黑白 1 图片大小 28*28
    # ([64, 1, 28, 28])
    x = self.conv1(x)
    x = self.conv2(x)
    # 全连贯层对 2 维数据进行计算
    x = x.view(x.size()[0], -1)
    x = self.fc1(x)
    x = self.fc2(x)
    return x

LR = 0.0003

定义模型

model = Net()

定义代价函数

entropy_loss = nn.CrossEntropyLoss()

定义优化器

optimizer = optim.Adam(model.parameters(), LR)
def train():

model.train()
for i, data in enumerate(train_loader):
    # 取得数据和对应的标签
    inputs, labels = data
    # 取得模型预测后果,(64,10)out = model(inputs)
    # 穿插熵代价函数 out(batch,C),labels(batch)
    loss = entropy_loss(out, labels)
    # 梯度清 0
    optimizer.zero_grad()
    # 计算梯度
    loss.backward()
    # 修改权值
    optimizer.step()

def test():

model.eval()
correct = 0
for i, data in enumerate(test_loader):
    # 取得数据和对应的标签
    inputs, labels = data
    # 取得模型预测后果
    out = model(inputs)
    # 取得最大值,以及最大值所在的地位
    _, predicted = torch.max(out, 1)
    # 预测正确的数量
    correct += (predicted == labels).sum()
print("Test acc: {0}".format(correct.item() / len(test_dataset)))
correct = 0
for i, data in enumerate(train_loader):
    # 取得数据和对应的标签
    inputs, labels = data
    # 取得模型预测后果
    out = model(inputs)
    # 取得最大值,以及最大值所在的地位
    _, predicted = torch.max(out, 1)
    # 预测正确的数量
    correct += (predicted == labels).sum()
print("Train acc: {0}".format(correct.item() / len(train_dataset)))

for epoch in range(0, 10):

print('epoch:', epoch)
train()
test()

正文完
 0