关于python:Python模块学习-logging模块

1 根本应用

配置logging根本的设置,而后在控制台输入日志,

import logging
logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
 
logger.info("Start print log")
logger.debug("Do something")
logger.warning("Something maybe fail.")
logger.info("Finish")

运行时,控制台输入,

2016-10-09 19:11:19,434 - __main__ - INFO - Start print log
2016-10-09 19:11:19,434 - __main__ - WARNING - Something maybe fail.
2016-10-09 19:11:19,434 - __main__ - INFO - Finish

logging中能够抉择很多音讯级别,如debug、info、warning、error以及critical。通过赋予logger或者handler不同的级别,开发者就能够只输入错误信息到特定的记录文件,或者在调试时只记录调试信息。</pre>

例如,咱们将logger的级别改为DEBUG,再察看一下输入后果,</pre>

logging.basicConfig(level = logging.DEBUG,format = ‘%(asctime)s – %(name)s – %(levelname)s – %(message)s’)</pre>

控制台输入,能够发现,输入了debug的信息。

2016-10-09 19:12:08,289 - __main__ - INFO - Start print log
2016-10-09 19:12:08,289 - __main__ - DEBUG - Do something
2016-10-09 19:12:08,289 - __main__ - WARNING - Something maybe fail.
2016-10-09 19:12:08,289 - __main__ - INFO - Finish

logging.basicConfig函数各参数:

filename:指定日志文件名;

filemode:和file函数意义雷同,指定日志文件的关上模式,’w’或者’a’;

format:指定输入的格局和内容,format能够输入很多有用的信息,

参数:作用 

%(levelno)s:打印日志级别的数值

%(levelname)s:打印日志级别的名称

%(pathname)s:打印以后执行程序的门路,其实就是sys.argv[0]

%(filename)s:打印以后执行程序名

%(funcName)s:打印日志的以后函数

%(lineno)d:打印日志的以后行号

%(asctime)s:打印日志的工夫

%(thread)d:打印线程ID%(threadName)s:打印线程名称

%(process)d:打印过程ID%(message)s:打印日志信息

datefmt:指定工夫格局,同time.strftime();</pre>

level:设置日志级别,默认为logging.WARNNING;</pre>

stream:指定将日志的输入流,能够指定输入到sys.stderr,sys.stdout或者文件,默认输入到sys.stderr,当stream和filename同时指定时,stream被疏忽;</pre>

2 将日志写入到文件

2.2.1 将日志写入到文件</pre>

设置logging,创立一个FileHandler,并对输入音讯的格局进行设置,将其增加到logger,而后将日志写入到指定的文件中,

import logginglogger = logging.getLogger(__name__)logger.setLevel(level = logging.INFO)handler = logging.FileHandler("log.txt")handler.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')handler.setFormatter(formatter)logger.addHandler(handler) logger.info("Start print log")logger.debug("Do something")logger.warning("Something maybe fail.")logger.info("Finish")

log.txt中日志数据为,

2016-10-09 19:01:13,263 - __main__ - INFO - Start print log2016-10-09 19:01:13,263 - __main__ - WARNING - Something maybe fail.2016-10-09 19:01:13,263 - __main__ - INFO - Finish

2.2 将日志同时输入到屏幕和日志文件</pre>

logger中增加StreamHandler,能够将日志输入到屏幕上,</pre>

import logginglogger = logging.getLogger(__name__)logger.setLevel(level = logging.INFO)handler = logging.FileHandler("log.txt")handler.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')handler.setFormatter(formatter) console = logging.StreamHandler()console.setLevel(logging.INFO) logger.addHandler(handler)logger.addHandler(console) logger.info("Start print log")logger.debug("Do something")logger.warning("Something maybe fail.")logger.info("Finish")

能够在log.txt文件和控制台中看到,

2016-10-09 19:20:46,553 - __main__ - INFO - Start print log2016-10-09 19:20:46,553 - __main__ - WARNING - Something maybe fail.2016-10-09 19:20:46,553 - __main__ - INFO - Finish

能够发现,logging有一个日志解决的主对象,其余解决形式都是通过addHandler增加进去,logging中蕴含的handler次要有如下几种,

handler名称:地位;作用 

StreamHandler:logging.StreamHandler;日志输入到流,能够是sys.stderr,sys.stdout或者文件

FileHandler:logging.FileHandler;日志输入到文件

BaseRotatingHandler:logging.handlers.BaseRotatingHandler;根本的日志回滚形式

RotatingHandler:logging.handlers.RotatingHandler;日志回滚形式,反对日志文件最大数量和日志文件回滚

TimeRotatingHandler:logging.handlers.TimeRotatingHandler;日志回滚形式,在肯定工夫区域内回滚日志文件

SocketHandler:logging.handlers.SocketHandler;近程输入日志到TCP/IPsockets

DatagramHandler:logging.handlers.DatagramHandler;近程输入日志到UDP sockets

SMTPHandler:logging.handlers.SMTPHandler;近程输入日志到邮件地址


SysLogHandler:logging.handlers.SysLogHandler;日志输入到syslog

NTEventLogHandler:logging.handlers.NTEventLogHandler;近程输入日志到Windows NT/2000/XP的事件日志

MemoryHandler:logging.handlers.MemoryHandler;日志输入到内存中的指定buffer

HTTPHandler:logging.handlers.HTTPHandler;通过"GET"或者"POST"近程输入到HTTP服务器

2.3 日志回滚</pre>

应用RotatingFileHandler,能够实现日志回滚,</pre>

import logging
from logging.handlers import RotatingFileHandler
logger = logging.getLogger(__name__)
logger.setLevel(level = logging.INFO)
#定义一个RotatingFileHandler,最多备份3个日志文件,每个日志文件最大1K
rHandler = RotatingFileHandler("log.txt",maxBytes = 1*1024,backupCount = 3)
rHandler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
rHandler.setFormatter(formatter)
 
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(formatter)
 
logger.addHandler(rHandler)
logger.addHandler(console)
 
logger.info("Start print log")
logger.debug("Do something")
logger.warning("Something maybe fail.")
logger.info("Finish")

能够在工程目录中看到,备份的日志文件,
</pre>

2016/10/09  19:36               732 log.txt
2016/10/09  19:36               967 log.txt.1
2016/10/09  19:36               985 log.txt.2
2016/10/09  19:36               976 log.txt.3

2.3 设置音讯的等级

能够设置不同的日志等级,用于管制日志的输入,
</pre>

日志等级:应用范畴
 
FATAL:致命谬误
CRITICAL:特地蹩脚的事件,如内存耗尽、磁盘空间为空,个别很少应用
ERROR:产生谬误时,如IO操作失败或者连贯问题
WARNING:产生很重要的事件,然而并不是谬误时,如用户登录明码谬误
INFO:解决申请或者状态变动等日常事务
DEBUG:调试过程中应用DEBUG等级,如算法中每个循环的中间状态

2.4 捕捉traceback

Python中的traceback模块被用于跟踪异样返回信息,能够在logging中记录下traceback,

代码,

import logging
logger = logging.getLogger(__name__)
logger.setLevel(level = logging.INFO)
handler = logging.FileHandler("log.txt")
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
 
console = logging.StreamHandler()
console.setLevel(logging.INFO)
 
logger.addHandler(handler)
logger.addHandler(console)
 
logger.info("Start print log")
logger.debug("Do something")
logger.warning("Something maybe fail.")
try:
    open("sklearn.txt","rb")
except (SystemExit,KeyboardInterrupt):
    raise
except Exception:
    logger.error("Faild to open sklearn.txt from logger.error",exc_info = True)
 
logger.info("Finish")

控制台和日志文件log.txt中输入,

Start print log
Something maybe fail.
Faild to open sklearn.txt from logger.error
Traceback (most recent call last):
  File "G:\zhb7627\Code\Eclipse WorkSpace\PythonTest\test.py", line 23, in <module>
    open("sklearn.txt","rb")
IOError: [Errno 2] No such file or directory: 'sklearn.txt'
Finish

也能够应用logger.exception(msg,_args),它等价于logger.error(msg,exc_info = True,_args),

logger.error("Faild to open sklearn.txt from logger.error",exc_info = True)

替换为,

logger.exception("Failed to open sklearn.txt from logger.exception")

控制台和日志文件log.txt中输入,

Start print log
Something maybe fail.
Failed to open sklearn.txt from logger.exception
Traceback (most recent call last):
  File "G:\zhb7627\Code\Eclipse WorkSpace\PythonTest\test.py", line 23, in <module>
    open("sklearn.txt","rb")
IOError: [Errno 2] No such file or directory: 'sklearn.txt'
Finish

2.5 多模块应用logging

主模块mainModule.py,

import logging
import subModule
logger = logging.getLogger("mainModule")
logger.setLevel(level = logging.INFO)
handler = logging.FileHandler("log.txt")
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
 
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(formatter)
 
logger.addHandler(handler)
logger.addHandler(console)
 
 
logger.info("creating an instance of subModule.subModuleClass")
a = subModule.SubModuleClass()
logger.info("calling subModule.subModuleClass.doSomething")
a.doSomething()
logger.info("done with  subModule.subModuleClass.doSomething")
logger.info("calling subModule.some_function")
subModule.som_function()
logger.info("done with subModule.some_function")

子模块subModule.py,

import logging
 
module_logger = logging.getLogger("mainModule.sub")
class SubModuleClass(object):
    def __init__(self):
        self.logger = logging.getLogger("mainModule.sub.module")
        self.logger.info("creating an instance in SubModuleClass")
    def doSomething(self):
        self.logger.info("do something in SubModule")
        a = []
        a.append(1)
        self.logger.debug("list a = " + str(a))
        self.logger.info("finish something in SubModuleClass")
 
def som_function():
    module_logger.info("call function some_function")

执行之后,在管制和日志文件log.txt中输入,

2016-10-09 20:25:42,276 - mainModule - INFO - creating an instance of subModule.subModuleClass
2016-10-09 20:25:42,279 - mainModule.sub.module - INFO - creating an instance in SubModuleClass
2016-10-09 20:25:42,279 - mainModule - INFO - calling subModule.subModuleClass.doSomething
2016-10-09 20:25:42,279 - mainModule.sub.module - INFO - do something in SubModule
2016-10-09 20:25:42,279 - mainModule.sub.module - INFO - finish something in SubModuleClass
2016-10-09 20:25:42,279 - mainModule - INFO - done with  subModule.subModuleClass.doSomething
2016-10-09 20:25:42,279 - mainModule - INFO - calling subModule.some_function
2016-10-09 20:25:42,279 - mainModule.sub - INFO - call function some_function
2016-10-09 20:25:42,279 - mainModule - INFO - done with subModule.some_function

首先在主模块定义了logger’mainModule’,并对它进行了配置,就能够在解释器过程外面的其余中央通过getLogger(‘mainModule’)失去的对象都是一样的,不须要重新配置,能够间接应用。定义的该logger的子logger,都能够共享父logger的定义和配置,所谓的父子logger是通过命名来辨认,任意以’mainModule’结尾的logger都是它的子logger,例如’mainModule.sub’。

理论开发一个application,首先能够通过logging配置文件编写好这个application所对应的配置,能够生成一个根logger,如’PythonAPP’,而后在主函数中通过fileConfig加载logging配置,接着在application的其余中央、不同的模块中,能够应用根logger的子logger,如’PythonAPP.Core’,’PythonAPP.Web’来进行log,而不须要重复的定义和配置各个模块的logger。

3 通过JSON或者YAML文件配置logging模块

只管能够在Python代码中配置logging,然而这样并不够灵便,最好的办法是应用一个配置文件来配置。在Python 2.7及当前的版本中,能够从字典中加载logging配置,也就意味着能够通过JSON或者YAML文件加载日志的配置。

3.1 通过JSON文件配置

JSON配置文件,

{
    "version":1,
    "disable_existing_loggers":false,
    "formatters":{
        "simple":{
            "format":"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
        }
    },
    "handlers":{
        "console":{
            "class":"logging.StreamHandler",
            "level":"DEBUG",
            "formatter":"simple",
            "stream":"ext://sys.stdout"
        },
        "info_file_handler":{
            "class":"logging.handlers.RotatingFileHandler",
            "level":"INFO",
            "formatter":"simple",
            "filename":"info.log",
            "maxBytes":"10485760",
            "backupCount":20,
            "encoding":"utf8"
        },
        "error_file_handler":{
            "class":"logging.handlers.RotatingFileHandler",
            "level":"ERROR",
            "formatter":"simple",
            "filename":"errors.log",
            "maxBytes":10485760,
            "backupCount":20,
            "encoding":"utf8"
        }
    },
    "loggers":{
        "my_module":{
            "level":"ERROR",
            "handlers":["info_file_handler"],
            "propagate":"no"
        }
    },
    "root":{
        "level":"INFO",
        "handlers":["console","info_file_handler","error_file_handler"]
    }
}

通过JSON加载配置文件,而后通过logging.dictConfig配置logging,

import json
import logging.config
import os
 
def setup_logging(default_path = "logging.json",default_level = logging.INFO,env_key = "LOG_CFG"):
    path = default_path
    value = os.getenv(env_key,None)
    if value:
        path = value
    if os.path.exists(path):
        with open(path,"r") as f:
            config = json.load(f)
            logging.config.dictConfig(config)
    else:
        logging.basicConfig(level = default_level)
 
def func():
    logging.info("start func")
 
    logging.info("exec func")
 
    logging.info("end func")
 
if __name__ == "__main__":
    setup_logging(default_path = "logging.json")
    func()

3.2 通过YAML文件配置

通过YAML文件进行配置,比JSON看起来更加简介明了,

version: 1
disable_existing_loggers: False
formatters:
        simple:
            format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
handlers:
    console:
            class: logging.StreamHandler
            level: DEBUG
            formatter: simple
            stream: ext://sys.stdout
    info_file_handler:
            class: logging.handlers.RotatingFileHandler
            level: INFO
            formatter: simple
            filename: info.log
            maxBytes: 10485760
            backupCount: 20
            encoding: utf8
    error_file_handler:
            class: logging.handlers.RotatingFileHandler
            level: ERROR
            formatter: simple
            filename: errors.log
            maxBytes: 10485760
            backupCount: 20
            encoding: utf8
loggers:
    my_module:
            level: ERROR
            handlers: [info_file_handler]
            propagate: no
root:
    level: INFO
    handlers: [console,info_file_handler,error_file_handler]

通过YAML加载配置文件,而后通过logging.dictConfig配置logging

import yaml
import logging.config
import os
 
def setup_logging(default_path = "logging.yaml",default_level = logging.INFO,env_key = "LOG_CFG"):
    path = default_path
    value = os.getenv(env_key,None)
    if value:
        path = value
    if os.path.exists(path):
        with open(path,"r") as f:
            config = yaml.load(f)
            logging.config.dictConfig(config)
    else:
        logging.basicConfig(level = default_level)
 
def func():
    logging.info("start func")
 
    logging.info("exec func")
 
    logging.info("end func")
 
if __name__ == "__main__":
    setup_logging(default_path = "logging.yaml")
    func()

文末福利

点击支付2020Python材料合集,视频&电子书

评论

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

这个站点使用 Akismet 来减少垃圾评论。了解你的评论数据如何被处理