关于python:LeetCode-97-交错字符串-Python

49次阅读

共计 1286 个字符,预计需要花费 4 分钟才能阅读完成。

97. 交织字符串


题目起源:力扣(LeetCode)https://leetcode-cn.com/problems/interleaving-string

题目


给定三个字符串 s1, s2, s3, 验证 s3 是否是由 s1 和 s2 交织组成的。

示例 1:

 输出: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
输入: true

示例 2:

 输出: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
输入: false

解题思路


思路:动静布局

在这里,咱们应用 不同门路 这道题的思维去解决问题,向下向右去挪动,求得是否存在这样的门路。

那么这个问题就能够转换为求证,s3 是否可能从向下选取 s1,向右选取 s2,这样的模式,去求得是否存在 s3 这条门路。

状态定义

dp[i][j] 示意 s1 前 i 个字符和 s2 前 j 个字符可能拼接成 s3(i+j) 个字符,也就是以后门路存在。

状态转移方程

如果 s1 的第 i 个元素和 s3 的第 i+j 个元素相等,那么 dp[i][j] 是否成立,则须要看 dp[i-1][j] 是否成立,也就是这里须要看 s1 的前 i-1 个元素和 s2 的前 j 个元素是否拼接成 s3 的前 i+j-1 个元素。

同样的 如果 s2 的第 j 个元素和 s3 的第 i+j 个元素相等,此时 dp[i][j] 是否成立,则须要看 dp[i][j-1] 是否成立,也就是须要看 s2 的前 i 个元素和 s2 的前 j-1 个元素是否可能拼接成 s3 的前 i+j-1 个元素。

那么最终的状态转移方程为:

dp[i][j] = (dp[i-1][j] and s3[i+j-1]=s1[i-1]) or (dp[i][j-1] and s3[i+j-1]=s2[j-1])

状态初始化

  • dp0 = True
  • 如果 j = 0,dpi 是否成立,取决于 dpi-1 以及 s1 的第 i 个字符是否等于 s3 的第 i 个字符;
  • 如果 i = 0,dp0 是否成立,取决于 dp0 以及 s3 的第 i 个字符与 s2 的第 i 个字符是否相等。

具体的实现代码如下。

代码实现


class Solution:
    def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
        # 先解决非凡状况,如果 s1 和 s2 的长度和不等于 s3 的长度,则返回 False。因为无奈交织拼接
        if len(s1) + len(s2) != len(s3):
            return False
        
        m = len(s1)
        n = len(s2)

        # 状态定义
        dp = [[False] * (n+1) for _ in range(m+1)]
        # 初始化
        dp[0][0] = True
        for i in range(1, m+1):
            dp[i][0] = dp[i-1][0] and s3[i-1] == s1[i-1]
        for j in range(1, n+1):
            dp[0][j] = dp[0][j-1] and s3[j-1] == s2[j-1]

        for i in range(1, m+1):
            for j in range(1, n+1):
                dp[i][j] = (dp[i-1][j] and s3[i+j-1]==s1[i-1]) or (dp[i][j-1] and s3[i+j-1]==s2[j-1])

        return dp[-1][-1]

实现后果


欢送关注


公众号【书所集录】

正文完
 0