共计 10709 个字符,预计需要花费 27 分钟才能阅读完成。
前言
数据可视化的第三方库挺多的,这里我次要举荐三个,别离是 Pygal、Bokeh、Plotly,废话不多说,间接上~~
举荐
数据可视化的库有挺多的,这里举荐几个比拟罕用的:
- Matplotlib
- Pygal
- Bokeh
- Seaborn
- Ggplot
- Plotly
- Pyechart
Pygal
pygal 官网地址(http://www.pygal.org/en/stable/)
装置 pygal 模块
pygal 模块的装置非常简单,只需输出一行 pip 命令即可
1 pip install pygal
装置实现:
pygal 模块介绍
pygal 是 Python 的第三方库,他的次要性能就是数据可视化,行将数字转化成图表的模式来出现,它提供的图表款式有柱状图、折线图、饼状图、雷达图 ……
柱状图
单列柱状图
import pygal
view = pygal.Bar()
#图表名
view.title = '柱状图'
#增加数据
view.add('numbers', [0,2,4,6,8,10])
#在浏览器中查看
#view.render_in_browser()
#保留为 view.svg(也能够保留为 jpg)
view.render_to_file('view.svg')
效果图:
留神:svg 图片用零碎自带的图片查看器关上可能会显示全彩色,能够尝试应用 Google 浏览器关上
多列柱状图
# 增加数据
view.add('numbers', [0,2,4,6,8,10])
view.add('numbers_2', [0,1,3,5,7,9])
重叠柱状图
view = pygal.StackedBar()
横向柱状图
view = pygal.HorizontalStackedBar()
折线图
简略折线图
import pygal
view = pygal.Line()
#图表名
view.title = '折线图'
#增加数据
view.add('numbers', [0,2,4,6,8,10])
view.add('numbers_2', [0,1,3,5,7,9])
#在浏览器中查看
#view.render_in_browser()
#保留为 view.svg(也能够保留为 jpg)
view.render_to_file('view.svg')
效果图:
纵向折线图
view = pygal.HorizontalLine()
重叠折线图
view = pygal.StackedLine(fill=True)
饼状图
简略饼状图
import pygal
view = pygal.Pie()
#图表名
view.title = '饼状图'
#增加数据
view.add('A', 31)
view.add('B', 55)
view.add('C', 14)
#保留为 view.svg(也能够保留为 jpg)
view.render_to_file('view.svg')
效果图:
多级饼状图
# 增加数据
view.add('A', [31,25])
view.add('B', [55,38])
view.add('C', [14,37])
圆环图
# 设置空心圆半径
view = pygal.Pie(inner_radius=0.4)
半圆图
view = pygal.Pie(half_pie=True)
雷达图
根底雷达图
import pygal
view = pygal.Radar()
#图表名
view.title = '雷达图'
#增加数据 (能够为任意个)
view.add('A', [31,56,34,67,34])
view.add('B', [23,18,57,45,35])
view.add('C', [14,45,76,34,76])
#保留为 view.svg(也能够保留为 jpg)
view.render_to_file('view.svg')
效果图:
plotly
plotly 文档地址(https://plot.ly/python/#finan…)
Plotly 是一款用来做数据分析和可视化的在线平台,性能十分弱小, 能够在线绘制很多图形比方条形图、散点图、饼图、直方图等等。而且还是反对在线编辑,以及多种语言 python、javascript、matlab、R 等许多 API。它在 python 中应用也很简略,间接用 pip install plotly 就能够了。举荐最好在 jupyter notebook 中应用,pycharm 操作不是很不便。应用 Plotly 能够画出很多媲美 Tableau 的高质量图:
这里尝试做了折线图、散点图和直方图,代码如下:
首先导入库
from plotly.graph_objs import Scatter,Layout
import plotly
import plotly.offline as py
import numpy as np
import plotly.graph_objs as go
#setting offilne
plotly.offline.init_notebook_mode(connected=True)
下面几行代码次要是援用一些库,plotly 有在线和离线两种模式,在线模式须要有账号能够云编辑。我选用的离线模式,plotly 设置为 offline 模式就能够间接在 notebook 外面显示了。
1. 制作折线图
N = 100
random_x = np.linspace(0,1,N)
random_y0 = np.random.randn(N)+5
random_y1 = np.random.randn(N)
random_y2 = np.random.randn(N)-5
#Create traces
trace0 = go.Scatter(
x = random_x,
y = random_y0,
mode = 'markers',
name = 'markers'
)
trace1 = go.Scatter(
x = random_x,
y = random_y1,
mode = 'lines+markers',
name = 'lines+markers'
)
trace2 = go.Scatter(
x = random_x,
y = random_y2,
mode = 'lines',
name = 'lines'
)
data = [trace0,trace1,trace2]
py.iplot(data)
随机设置 4 个参数,一个 x 轴的数字和三个 y 轴的随机数据,制作出三种不同类型的图。trace0 是 markers,trace1 是 lines 和 markers,trace3 是 lines。而后把三种图放在 data 这个列表外面,调用 py.iplot(data) 即可。
绘制的图片零碎默认配色也挺难看的~
2. 制作散点图
trace1 = go.Scatter(y = np.random.randn(500),
mode = 'markers',
marker = dict(
size = 16,
color = np.random.randn(500),
colorscale = 'Viridis',
showscale = True
)
)
data = [trace1]
py.iplot(data)
把 mode 设置为 markers 就是散点图,而后 marker 外面设置一组参数,比方色彩的随机范畴,散点的大小,还有图例等等。
3. 直方图
trace0 = go.Bar(
x = ['Jan','Feb','Mar','Apr', 'May','Jun',
'Jul','Aug','Sep','Oct','Nov','Dec'],
y = [20,14,25,16,18,22,19,15,12,16,14,17],
name = 'Primary Product',
marker=dict(color = 'rgb(49,130,189)'
)
)
trace1 = go.Bar(
x = ['Jan','Feb','Mar','Apr', 'May','Jun',
'Jul','Aug','Sep','Oct','Nov','Dec'],
y = [19,14,22,14,16,19,15,14,10,12,12,16],
name = 'Secondary Product',
marker=dict(color = 'rgb(204,204,204)'
)
)
data = [trace0,trace1]
py.iplot(data)
Bokeh
条形图
这配色看着还挺舒服的,比 pyecharts 条形图的配色难看一点。
from bokeh.io import show, output_file
from bokeh.models import ColumnDataSource
from bokeh.palettes import Spectral6
from bokeh.plotting import figure
output_file("colormapped_bars.html")# 配置输入文件名
fruits = ['Apples', '魅族', 'OPPO', 'VIVO', '小米', '华为'] # 数据
counts = [5, 3, 4, 2, 4, 6] # 数据
source = ColumnDataSource(data=dict(fruits=fruits, counts=counts, color=Spectral6))
p = figure(x_range=fruits, y_range=(0,9), plot_height=250, title="Fruit Counts",
toolbar_location=None, tools="")# 条形图配置项
p.vbar(x='fruits', top='counts', width=0.9, color='color', legend="fruits", source=source)
p.xgrid.grid_line_color = None # 配置网格线色彩
p.legend.orientation = "horizontal" # 图表方向为程度方向
p.legend.location = "top_center"
show(p) # 展现图表
年度条形图
能够比照不同工夫点的量。
from bokeh.io import show, output_file
from bokeh.models import ColumnDataSource, FactorRange
from bokeh.plotting import figure
output_file("bars.html") # 输入文件名
fruits = ['Apple', '魅族', 'OPPO', 'VIVO', '小米', '华为'] # 参数
years = ['2015', '2016', '2017'] # 参数
data = {'fruits': fruits,
'2015': [2, 1, 4, 3, 2, 4],
'2016': [5, 3, 3, 2, 4, 6],
'2017': [3, 2, 4, 4, 5, 3]}
x = [(fruit, year) for fruit in fruits for year in years]
counts = sum(zip(data['2015'], data['2016'], data['2017']), ())
source = ColumnDataSource(data=dict(x=x, counts=counts))
p = figure(x_range=FactorRange(*x), plot_height=250, title="Fruit Counts by Year",
toolbar_location=None, tools="")
p.vbar(x='x', top='counts', width=0.9, source=source)
p.y_range.start = 0
p.x_range.range_padding = 0.1
p.xaxis.major_label_orientation = 1
p.xgrid.grid_line_color = None
show(p)
饼图
from collections import Counter
from math import pi
import pandas as pd
from bokeh.io import output_file, show
from bokeh.palettes import Category20c
from bokeh.plotting import figure
from bokeh.transform import cumsum
output_file("pie.html")
x = Counter({
'中国': 157,
'美国': 93,
'日本': 89,
'巴西': 63,
'德国': 44,
'印度': 42,
'意大利': 40,
'澳大利亚': 35,
'法国': 31,
'西班牙': 29
})
data = pd.DataFrame.from_dict(dict(x), orient='index').reset_index().rename(index=str, columns={0:'value', 'index':'country'})
data['angle'] = data['value']/sum(x.values()) * 2*pi
data['color'] = Category20c[len(x)]
p = figure(plot_height=350, title="Pie Chart", toolbar_location=None,
tools="hover", tooltips="@country: @value")
p.wedge(x=0, y=1, radius=0.4,
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
line_color="white", fill_color='color', legend='country', source=data)
p.axis.axis_label=None
p.axis.visible=False
p.grid.grid_line_color = None
show(p)
条形图
from bokeh.io import output_file, show
from bokeh.models import ColumnDataSource
from bokeh.palettes import GnBu3, OrRd3
from bokeh.plotting import figure
output_file("stacked_split.html")
fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries']
years = ["2015", "2016", "2017"]
exports = {'fruits': fruits,
'2015': [2, 1, 4, 3, 2, 4],
'2016': [5, 3, 4, 2, 4, 6],
'2017': [3, 2, 4, 4, 5, 3]}
imports = {'fruits': fruits,
'2015': [-1, 0, -1, -3, -2, -1],
'2016': [-2, -1, -3, -1, -2, -2],
'2017': [-1, -2, -1, 0, -2, -2]}
p = figure(y_range=fruits, plot_height=250, x_range=(-16, 16), title="Fruit import/export, by year",
toolbar_location=None)
p.hbar_stack(years, y='fruits', height=0.9, color=GnBu3, source=ColumnDataSource(exports),
legend=["%s exports" % x for x in years])
p.hbar_stack(years, y='fruits', height=0.9, color=OrRd3, source=ColumnDataSource(imports),
legend=["%s imports" % x for x in years])
p.y_range.range_padding = 0.1
p.ygrid.grid_line_color = None
p.legend.location = "top_left"
p.axis.minor_tick_line_color = None
p.outline_line_color = None
show(p)
散点图
from bokeh.plotting import figure, output_file, show
output_file("line.html")
p = figure(plot_width=400, plot_height=400)
p.circle([1, 2, 3, 4, 5], [6, 7, 2, 4, 5], size=20, color="navy", alpha=0.5)
show(p)
六边形图
这两天,马蜂窝刚被发现数据造假,这不,与马蜂窝应应景。
import numpy as np
from bokeh.io import output_file, show
from bokeh.plotting import figure
from bokeh.util.hex import axial_to_cartesian
output_file("hex_coords.html")
q = np.array([0, 0, 0, -1, -1, 1, 1])
r = np.array([0, -1, 1, 0, 1, -1, 0])
p = figure(plot_width=400, plot_height=400, toolbar_location=None) #
p.grid.visible = False # 配置网格是否可见
p.hex_tile(q, r, size=1, fill_color=["firebrick"] * 3 + ["navy"] * 4,
line_color="white", alpha=0.5)
x, y = axial_to_cartesian(q, r, 1, "pointytop")
p.text(x, y, text=["(%d, %d)" % (q, r) for (q, r) in zip(q, r)],
text_baseline="middle", text_align="center")
show(p)
环比条形图
这个实现挺厉害的,看了一眼就吸引了我。我在代码中都做了一些正文,心愿对你了解有帮忙。注:圆心为正地方,即直角坐标系中标签为(0,0)的中央。
from collections import OrderedDict
from math import log, sqrt
import numpy as np
import pandas as pd
from six.moves import cStringIO as StringIO
from bokeh.plotting import figure, show, output_file
antibiotics = """
bacteria, penicillin, streptomycin, neomycin, gram
结核分枝杆菌, 800, 5, 2, negative
沙门氏菌, 10, 0.8, 0.09, negative
变形杆菌, 3, 0.1, 0.1, negative
肺炎克雷伯氏菌, 850, 1.2, 1, negative
布鲁氏菌, 1, 2, 0.02, negative
铜绿假单胞菌, 850, 2, 0.4, negative
大肠杆菌, 100, 0.4, 0.1, negative
产气杆菌, 870, 1, 1.6, negative
红色葡萄球菌, 0.007, 0.1, 0.001, positive
溶血性链球菌, 0.001, 14, 10, positive
草绿色链球菌, 0.005, 10, 40, positive
肺炎双球菌, 0.005, 11, 10, positive
"""
drug_color = OrderedDict([# 配置两头标签名称与色彩
("盘尼西林", "#0d3362"),
("链霉素", "#c64737"),
("新霉素", "black"),
])
gram_color = {
"positive": "#aeaeb8",
"negative": "#e69584",
}
# 读取数据
df = pd.read_csv(StringIO(antibiotics),
skiprows=1,
skipinitialspace=True,
engine='python')
width = 800
height = 800
inner_radius = 90
outer_radius = 300 - 10
minr = sqrt(log(.001 * 1E4))
maxr = sqrt(log(1000 * 1E4))
a = (outer_radius - inner_radius) / (minr - maxr)
b = inner_radius - a * maxr
def rad(mic):
return a * np.sqrt(np.log(mic * 1E4)) + b
big_angle = 2.0 * np.pi / (len(df) + 1)
small_angle = big_angle / 7
# 整体配置
p = figure(plot_width=width, plot_height=height, title="",
x_axis_type=None, y_axis_type=None,
x_range=(-420, 420), y_range=(-420, 420),
min_border=0, outline_line_color="black",
background_fill_color="#f0e1d2")
p.xgrid.grid_line_color = None
p.ygrid.grid_line_color = None
# annular wedges
angles = np.pi / 2 - big_angle / 2 - df.index.to_series() * big_angle #计算角度
colors = [gram_color[gram] for gram in df.gram] # 配置色彩
p.annular_wedge(0, 0, inner_radius, outer_radius, -big_angle + angles, angles, color=colors,)
# small wedges
p.annular_wedge(0, 0, inner_radius, rad(df.penicillin),
-big_angle + angles + 5 * small_angle, -big_angle + angles + 6 * small_angle,
color=drug_color['盘尼西林'])
p.annular_wedge(0, 0, inner_radius, rad(df.streptomycin),
-big_angle + angles + 3 * small_angle, -big_angle + angles + 4 * small_angle,
color=drug_color['链霉素'])
p.annular_wedge(0, 0, inner_radius, rad(df.neomycin),
-big_angle + angles + 1 * small_angle, -big_angle + angles + 2 * small_angle,
color=drug_color['新霉素'])
# 绘制大圆和标签
labels = np.power(10.0, np.arange(-3, 4))
radii = a * np.sqrt(np.log(labels * 1E4)) + b
p.circle(0, 0, radius=radii, fill_color=None, line_color="white")
p.text(0, radii[:-1], [str(r) for r in labels[:-1]],
text_font_size="8pt", text_align="center", text_baseline="middle")
# 半径
p.annular_wedge(0, 0, inner_radius - 10, outer_radius + 10,
-big_angle + angles, -big_angle + angles, color="black")
# 细菌标签
xr = radii[0] * np.cos(np.array(-big_angle / 2 + angles))
yr = radii[0] * np.sin(np.array(-big_angle / 2 + angles))
label_angle = np.array(-big_angle / 2 + angles)
label_angle[label_angle < -np.pi / 2] += np.pi # easier to read labels on the left side
# 绘制各个细菌的名字
p.text(xr, yr, df.bacteria, angle=label_angle,
text_font_size="9pt", text_align="center", text_baseline="middle")
# 绘制圆形,其中数字别离为 x 轴与 y 轴标签
p.circle([-40, -40], [-370, -390], color=list(gram_color.values()), radius=5)
# 绘制文字
p.text([-30, -30], [-370, -390], text=["Gram-" + gr for gr in gram_color.keys()],
text_font_size="7pt", text_align="left", text_baseline="middle")
# 绘制矩形,两头标签局部。其中 -40,-40,-40 为三个矩形的 x 轴坐标。18,0,-18 为三个矩形的 y 轴坐标
p.rect([-40, -40, -40], [18, 0, -18], width=30, height=13,
color=list(drug_color.values()))
# 配置两头标签文字、文字大小、文字对齐形式
p.text([-15, -15, -15], [18, 0, -18], text=list(drug_color),
text_font_size="9pt", text_align="left", text_baseline="middle")
output_file("burtin.html", title="burtin.py example")
show(p)
元素周期表
元素周期表,这个实现好牛逼啊,间隔初三刚开始学化学曾经很边远了,想当年我还是化学课代表呢!因为根本用不到化学了,这里就不实现了。
今日的分享到这里就完结了,如果对数据可视化有更好的倡议,欢送在评论区留言与我交换,最初祝大家学习提高,大礼包详见个人主页简介获取