关于python:用Python爬取了雪中悍刀行数据并将其可视化分析后终于知道它为什么这么火了

30次阅读

共计 14227 个字符,预计需要花费 36 分钟才能阅读完成。

绪论

本期是对腾讯热播剧——雪中悍刀行的一次爬虫与数据分析,耗时一个小时,总爬取条数 1W 条评论,很适宜新人练手,值得注意的一点是评论的情绪文本剖析解决,这是第一次接触的常识。

爬虫方面:因为腾讯的评论数据是封装在 json 外面,所以只须要找到 json 文件,对须要的数据进行提取保留即可。

  • 视频网址:https://v.qq.com/x/cover/mzc0…
  • 评论 json 数据网址:https://video.coral.qq.com/va…
  • 注:只有替换视频数字 id 的值,即可爬取其余视频的评论

如何查找视频 id?

我的项目构造:


一. 爬虫局部:

1. 爬取评论内容代码:spiders.py

import requests
import re
import random

def get_html(url, params):
    uapools = ['Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153 Safari/537.36',
        'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.75.14 (KHTML, like Gecko) Version/7.0.3 Safari/537.75.14'
    ]

    thisua = random.choice(uapools)
    headers = {"User-Agent": thisua}
    r = requests.get(url, headers=headers, params=params)
    r.raise_for_status()
    r.encoding = r.apparent_encoding
    r.encoding = 'utf-8'# 不加此句呈现乱码
    return r.text

def parse_page(infolist, data):
    commentpat = '"content":"(.*?)"'
    lastpat = '"last":"(.*?)"'
    commentall = re.compile(commentpat, re.S).findall(data)
    next_cid = re.compile(lastpat).findall(data)[0]
    infolist.append(commentall)
    return next_cid


def print_comment_list(infolist):
    j = 0
    for page in infolist:
        print('第' + str(j + 1) + '页 \n')
        commentall = page
        for i in range(0, len(commentall)):
            print(commentall[i] + '\n')
        j += 1


def save_to_txt(infolist, path):
    fw = open(path, 'w+', encoding='utf-8')
    j = 0
    for page in infolist:
        #fw.write('第' + str(j + 1) + '页 \n')
        commentall = page
        for i in range(0, len(commentall)):
            fw.write(commentall[i] + '\n')
        j += 1
    fw.close()


def main():
    infolist = []
    vid = '7579013546';
    cid = "0";
    page_num = 3000
    url = 'https://video.coral.qq.com/varticle/' + vid + '/comment/v2'
    #print(url)

    for i in range(page_num):
        params = {'orinum': '10', 'cursor': cid}
        html = get_html(url, params)
        cid = parse_page(infolist, html)


    print_comment_list(infolist)
    save_to_txt(infolist, 'content.txt')


main()

2. 爬取评论工夫代码:sp.py

import requests
import re
import random


def get_html(url, params):
    uapools = ['Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153 Safari/537.36',
        'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.75.14 (KHTML, like Gecko) Version/7.0.3 Safari/537.75.14'
    ]

    thisua = random.choice(uapools)
    headers = {"User-Agent": thisua}
    r = requests.get(url, headers=headers, params=params)
    r.raise_for_status()
    r.encoding = r.apparent_encoding
    r.encoding = 'utf-8'# 不加此句呈现乱码
    return r.text


def parse_page(infolist, data):
    commentpat = '"time":"(.*?)"'
    lastpat = '"last":"(.*?)"'

    commentall = re.compile(commentpat, re.S).findall(data)
    next_cid = re.compile(lastpat).findall(data)[0]

    infolist.append(commentall)

    return next_cid



def print_comment_list(infolist):
    j = 0
    for page in infolist:
        print('第' + str(j + 1) + '页 \n')
        commentall = page
        for i in range(0, len(commentall)):
            print(commentall[i] + '\n')
        j += 1


def save_to_txt(infolist, path):
    fw = open(path, 'w+', encoding='utf-8')
    j = 0
    for page in infolist:
        #fw.write('第' + str(j + 1) + '页 \n')
        commentall = page
        for i in range(0, len(commentall)):
            fw.write(commentall[i] + '\n')
        j += 1
    fw.close()


def main():
    infolist = []
    vid = '7579013546';
    cid = "0";
    page_num =3000
    url = 'https://video.coral.qq.com/varticle/' + vid + '/comment/v2'
    #print(url)

    for i in range(page_num):
        params = {'orinum': '10', 'cursor': cid}
        html = get_html(url, params)
        cid = parse_page(infolist, html)


    print_comment_list(infolist)
    save_to_txt(infolist, 'time.txt')


main()

二. 数据处理局部

1. 评论的工夫戳转换为失常工夫 time.py

# coding=gbk
import csv
import time

csvFile = open("data.csv",'w',newline='',encoding='utf-8')
writer = csv.writer(csvFile)
csvRow = []
#print(csvRow)
f = open("time.txt",'r',encoding='utf-8')
for line in f:
    csvRow = int(line)
    #print(csvRow)

    timeArray = time.localtime(csvRow)
    csvRow = time.strftime("%Y-%m-%d %H:%M:%S", timeArray)
    print(csvRow)
    csvRow = csvRow.split()
    writer.writerow(csvRow)

f.close()
csvFile.close()

2. 评论内容读入 csv  CD.py

# coding=gbk
import csv
csvFile = open("content.csv",'w',newline='',encoding='utf-8')
writer = csv.writer(csvFile)
csvRow = []

f = open("content.txt",'r',encoding='utf-8')
for line in f:
    csvRow = line.split()
    writer.writerow(csvRow)

f.close()
csvFile.close()

3. 统计一天各个时间段内的评论数 py.py

# coding=gbk
import csv

from pyecharts import options as opts
from sympy.combinatorics import Subset
from wordcloud import WordCloud

with open('../Spiders/data.csv') as csvfile:
    reader = csv.reader(csvfile)

    data1 = [str(row[1])[0:2] for row in reader]

    print(data1)
print(type(data1))


#先变成汇合失去 seq 中的所有元素,防止反复遍历
set_seq = set(data1)
rst = []
for item in set_seq:
    rst.append((item,data1.count(item)))  #增加元素及呈现个数
rst.sort()
print(type(rst))
print(rst)

with open("time2.csv", "w+", newline='', encoding='utf-8') as f:
    writer = csv.writer(f, delimiter=',')
    for i in rst:                # 对于每一行的,将这一行的每个元素别离写在对应的列中
        writer.writerow(i)

with open('time2.csv') as csvfile:
     reader = csv.reader(csvfile)
     x = [str(row[0]) for row in reader]
     print(x)
with open('time2.csv') as csvfile:
    reader = csv.reader(csvfile)
    y1 = [float(row[1]) for row in reader]
    print(y1)

4. 统计最近评论数 py1.py

# coding=gbk
import csv

from pyecharts import options as opts
from sympy.combinatorics import Subset
from wordcloud import WordCloud

with open('../Spiders/data.csv') as csvfile:
    reader = csv.reader(csvfile)

    data1 = [str(row[0]) for row in reader]
    #print(data1)
print(type(data1))


#先变成汇合失去 seq 中的所有元素,防止反复遍历
set_seq = set(data1)
rst = []
for item in set_seq:
    rst.append((item,data1.count(item)))  #增加元素及呈现个数
rst.sort()
print(type(rst))
print(rst)



with open("time1.csv", "w+", newline='', encoding='utf-8') as f:
    writer = csv.writer(f, delimiter=',')
    for i in rst:                # 对于每一行的,将这一行的每个元素别离写在对应的列中
        writer.writerow(i)

with open('time1.csv') as csvfile:
     reader = csv.reader(csvfile)
     x = [str(row[0]) for row in reader]
     print(x)
with open('time1.csv') as csvfile:
    reader = csv.reader(csvfile)
    y1 = [float(row[1]) for row in reader]

    print(y1)

三. 数据分析

数据分析方面:波及到了词云图,条形,折线,饼图,后三者是对评论工夫与主演占比的剖析,然而腾讯的评论工夫是以工夫戳的模式显示,所以要进行转换,再去统计呈现次数,最初,新加了对评论内容的情感剖析。

1. 制作词云图

wc.py

import numpy as np
import re
import jieba
from wordcloud import WordCloud
from matplotlib import pyplot as plt
from PIL import Image

# 下面的包本人装置,不会的就百度

f = open('content.txt', 'r', encoding='utf-8')  # 这是数据源,也就是想生成词云的数据
txt = f.read()  # 读取文件
f.close()  # 敞开文件,其实用 with 就好,然而懒得改了
# 如果是文章的话,须要用到 jieba 分词,分完之后也能够本人解决下再生成词云
newtxt = re.sub("[A-Za-z0-9!%[],\。]", "", txt)
print(newtxt)
words = jieba.lcut(newtxt)

img = Image.open(r'wc.jpg')  # 想要搞得形态
img_array = np.array(img)

# 相干配置,外面这个 collocations 配置能够防止反复
wordcloud = WordCloud(
    background_color="white",
    width=1080,
    height=960,
    font_path="../ 文悦新青年.otf",
    max_words=150,
    scale=10,# 清晰度
    max_font_size=100,
    mask=img_array,
    collocations=False).generate(newtxt)

plt.imshow(wordcloud)
plt.axis('off')
plt.show()
wordcloud.to_file('wc.png')

轮廓图:wc.jpg

在这里插入图片形容

词云图:result.png(注:这里要把英文字母过滤掉)

2. 制作最近评论数条形图 DrawBar.py

# encoding: utf-8
import csv
import pyecharts.options as opts
from pyecharts.charts import Bar
from pyecharts.globals import ThemeType


class DrawBar(object):

    """绘制柱形图类"""
    def __init__(self):
        """创立柱状图实例,并设置宽高和格调"""
        self.bar = Bar(init_opts=opts.InitOpts(width='1500px', height='700px', theme=ThemeType.LIGHT))

    def add_x(self):
        """为图形增加 X 轴数据"""
        with open('time1.csv') as csvfile:
            reader = csv.reader(csvfile)
            x = [str(row[0]) for row in reader]
            print(x)


        self.bar.add_xaxis(xaxis_data=x,)

    def add_y(self):
        with open('time1.csv') as csvfile:
            reader = csv.reader(csvfile)
            y1 = [float(row[1]) for row in reader]

            print(y1)



        """为图形增加 Y 轴数据,可增加多条"""
        self.bar.add_yaxis(  # 第一个 Y 轴数据
            series_name="评论数",  # Y 轴数据名称
            y_axis=y1,  # Y 轴数据
            label_opts=opts.LabelOpts(is_show=True,color="black"),  # 设置标签
            bar_max_width='100px',  # 设置柱子最大宽度
        )


    def set_global(self):
        """设置图形的全局属性"""
        #self.bar(width=2000,height=1000)
        self.bar.set_global_opts(
            title_opts=opts.TitleOpts(  # 设置题目
                title='雪中悍刀行近日评论统计',title_textstyle_opts=opts.TextStyleOpts(font_size=35)

            ),
            tooltip_opts=opts.TooltipOpts(  # 提示框配置项(鼠标移到图形上时显示的货色)is_show=True,  # 是否显示提示框
                trigger="axis",  # 触发类型(axis 坐标轴触发,鼠标移到时会有一条垂直于 X 轴的实线追随鼠标挪动,并显示提示信息)axis_pointer_type="cross"# 指示器类型(cross 将会生成两条别离垂直于 X 轴和 Y 轴的虚线,不启用 trigger 才会显示齐全)),
            toolbox_opts=opts.ToolboxOpts(),  # 工具箱配置项(什么都不填默认开启所有工具)

        )

    def draw(self):
        """绘制图形"""

        self.add_x()
        self.add_y()
        self.set_global()
        self.bar.render('../Html/DrawBar.html')  # 将图绘制到 test.html 文件内,可在浏览器关上
    def run(self):
        """执行函数"""
        self.draw()



if __name__ == '__main__':
    app = DrawBar()

app.run()

效果图:DrawBar.html


3. 制作每小时评论条形图 DrawBar2.py


# encoding: utf-8
# encoding: utf-8
import csv
import pyecharts.options as opts
from pyecharts.charts import Bar
from pyecharts.globals import ThemeType


class DrawBar(object):

    """绘制柱形图类"""
    def __init__(self):
        """创立柱状图实例,并设置宽高和格调"""
        self.bar = Bar(init_opts=opts.InitOpts(width='1500px', height='700px', theme=ThemeType.MACARONS))

    def add_x(self):
        """为图形增加 X 轴数据"""
        str_name1 = '点'

        with open('time2.csv') as csvfile:
            reader = csv.reader(csvfile)
            x = [str(row[0] + str_name1) for row in reader]
            print(x)


        self.bar.add_xaxis(xaxis_data=x)

    def add_y(self):
        with open('time2.csv') as csvfile:
            reader = csv.reader(csvfile)
            y1 = [int(row[1]) for row in reader]

            print(y1)



        """为图形增加 Y 轴数据,可增加多条"""
        self.bar.add_yaxis(  # 第一个 Y 轴数据
            series_name="评论数",  # Y 轴数据名称
            y_axis=y1,  # Y 轴数据
            label_opts=opts.LabelOpts(is_show=False),  # 设置标签
            bar_max_width='50px',  # 设置柱子最大宽度

        )


    def set_global(self):
        """设置图形的全局属性"""
        #self.bar(width=2000,height=1000)
        self.bar.set_global_opts(
            title_opts=opts.TitleOpts(  # 设置题目
                title='雪中悍刀行各时间段评论统计',title_textstyle_opts=opts.TextStyleOpts(font_size=35)

            ),
            tooltip_opts=opts.TooltipOpts(  # 提示框配置项(鼠标移到图形上时显示的货色)is_show=True,  # 是否显示提示框
                trigger="axis",  # 触发类型(axis 坐标轴触发,鼠标移到时会有一条垂直于 X 轴的实线追随鼠标挪动,并显示提示信息)axis_pointer_type="cross"# 指示器类型(cross 将会生成两条别离垂直于 X 轴和 Y 轴的虚线,不启用 trigger 才会显示齐全)),
            toolbox_opts=opts.ToolboxOpts(),  # 工具箱配置项(什么都不填默认开启所有工具)

        )

    def draw(self):
        """绘制图形"""

        self.add_x()
        self.add_y()
        self.set_global()
        self.bar.render('../Html/DrawBar2.html')  # 将图绘制到 test.html 文件内,可在浏览器关上
    def run(self):
        """执行函数"""
        self.draw()

if __name__ == '__main__':
    app = DrawBar()

app.run()

效果图:DrawBar2.html

4. 制作近日评论数饼图   pie_pyecharts.py

import csv
from pyecharts import options as opts
from pyecharts.charts import Pie
from random import randint
from pyecharts.globals import ThemeType
with open('time1.csv') as csvfile:
    reader = csv.reader(csvfile)
    x = [str(row[0]) for row in reader]
    print(x)
with open('time1.csv') as csvfile:
    reader = csv.reader(csvfile)
    y1 = [float(row[1]) for row in reader]
    print(y1)
num = y1
lab = x
(Pie(init_opts=opts.InitOpts(width='1700px',height='450px',theme=ThemeType.LIGHT))# 默认 900,600
    .set_global_opts(
        title_opts=opts.TitleOpts(title="雪中悍刀行近日评论统计",
                                               title_textstyle_opts=opts.TextStyleOpts(font_size=27)),legend_opts=opts.LegendOpts(pos_top="10%", pos_left="1%",# 图例地位调整),)
    .add(series_name='',center=[280, 270], data_pair=[(j, i) for i, j in zip(num, lab)])# 饼图
   .add(series_name='',center=[845, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])# 环图
    .add(series_name='', center=[1380, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')# 南丁格尔图
).render('pie_pyecharts.html')

效果图

5. 制作每小时评论饼图  pie_pyecharts2.py

import csv
from pyecharts import options as opts
from pyecharts.charts import Pie
from random import randint
from pyecharts.globals import ThemeType
str_name1 = '点'
with open('time2.csv') as csvfile:
    reader = csv.reader(csvfile)
    x = [str(row[0]+str_name1) for row in reader]
    print(x)
with open('time2.csv') as csvfile:
    reader = csv.reader(csvfile)
    y1 = [int(row[1]) for row in reader]

    print(y1)
num = y1
lab = x
(Pie(init_opts=opts.InitOpts(width='1650px',height='500px',theme=ThemeType.LIGHT,))# 默认 900,600
     .set_global_opts(
        title_opts=opts.TitleOpts(title="雪中悍刀行每小时评论统计"
                                  ,title_textstyle_opts=opts.TextStyleOpts(font_size=27)),
        legend_opts=opts.LegendOpts(pos_top="8%", pos_left="4%",# 图例地位调整),
    )
    .add(series_name='',center=[250, 300], data_pair=[(j, i) for i, j in zip(num, lab)])# 饼图
    .add(series_name='',center=[810, 300],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])# 环图
    .add(series_name='', center=[1350, 300],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')# 南丁格尔图
).render('pie_pyecharts2.html')

效果图

6. 制作观看工夫区间评论统计饼图  pie_pyecharts3.py

# coding=gbk
import csv
from pyecharts import options as opts
from pyecharts.globals import ThemeType
from sympy.combinatorics import Subset
from wordcloud import WordCloud
from pyecharts.charts import Pie
from random import randintwith open(/data.csv') as csvfile:
    reader = csv.reader(csvfile)
    data2 = [int(row[1].strip('')[0:2]) for row in reader]
    #print(data2)
print(type(data2))
#先变成汇合失去 seq 中的所有元素,防止反复遍历
set_seq = set(data2)
list = []
for item in set_seq:
    list.append((item,data2.count(item)))  #增加元素及呈现个数
list.sort()
print(type(list))
#print(list)
with open("time2.csv", "w+", newline='', encoding='utf-8') as f:
    writer = csv.writer(f, delimiter=',')
    for i in list:                # 对于每一行的,将这一行的每个元素别离写在对应的列中
        writer.writerow(i)
n = 4# 分成 n 组
m = int(len(list)/n)
list2 = []
for i in range(0, len(list), m):
    list2.append(list[i:i+m])

print("凌晨 :",list2[0])
print("上午 :",list2[1])
print("下午 :",list2[2])
print("早晨 :",list2[3])

with open('time2.csv') as csvfile:
    reader = csv.reader(csvfile)
    y1 = [int(row[1]) for row in reader]

    print(y1)

n =6
groups = [y1[i:i + n] for i in range(0, len(y1), n)]

print(groups)

x=['凌晨','上午','下午','早晨']
y1=[]
for y1 in groups:
    num_sum = 0
    for groups in y1:
        num_sum += groups
str_name1 = '点'
num = y1
lab = x
(Pie(init_opts=opts.InitOpts(width='1500px',height='450px',theme=ThemeType.LIGHT))# 默认 900,600
        .set_global_opts(
        title_opts=opts.TitleOpts(title="雪中悍刀行观看工夫区间评论统计"
                                  , title_textstyle_opts=opts.TextStyleOpts(font_size=30)),
        legend_opts=opts.LegendOpts(pos_top="8%",  # 图例地位调整),
    )
    .add(series_name='',center=[260, 270], data_pair=[(j, i) for i, j in zip(num, lab)])# 饼图
   .add(series_name='',center=[1230, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])# 环图
    .add(series_name='', center=[750, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')# 南丁格尔图
).render('pie_pyecharts3.html')

效果图

7. 制作雪中悍刀行主演提及占比饼图  pie_pyecharts4.py

import csv
from pyecharts import options as opts
from pyecharts.charts import Pie
from random import randint
from pyecharts.globals import ThemeType
f = open('content.txt', 'r', encoding='utf-8')  # 这是数据源,也就是想生成词云的数据
words = f.read()  # 读取文件
f.close()  # 敞开文件,其实用 with 就好,然而懒得改了

name=["张若昀","李庚希","胡军"]

print(name)
count=[float(words.count("张若昀")),
      float(words.count("李庚希")),
      float(words.count("胡军"))]
print(count)
num = count
lab = name
(Pie(init_opts=opts.InitOpts(width='1650px',height='450px',theme=ThemeType.LIGHT))# 默认 900,600
    .set_global_opts(
        title_opts=opts.TitleOpts(title="雪中悍刀行主演提及占比",
                                               title_textstyle_opts=opts.TextStyleOpts(font_size=27)),legend_opts=opts.LegendOpts(pos_top="3%", pos_left="33%",# 图例地位调整),)
    .add(series_name='',center=[280, 270], data_pair=[(j, i) for i, j in zip(num, lab)])# 饼图
   .add(series_name='',center=[800, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])# 环图
    .add(series_name='', center=[1300, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')# 南丁格尔图
).render('pie_pyecharts4.html')

效果图

8. 评论内容情感剖析  SnowNLP.py

import numpy as np
from snownlp import SnowNLP
import matplotlib.pyplot as plt

f = open('content.txt', 'r', encoding='UTF-8')
list = f.readlines()
sentimentslist = []
for i in list:
    s = SnowNLP(i)

    print(s.sentiments)
    sentimentslist.append(s.sentiments)
plt.hist(sentimentslist, bins=np.arange(0, 1, 0.01), facecolor='g')
plt.xlabel('Sentiments Probability')
plt.ylabel('Quantity')
plt.title('Analysis of Sentiments')
plt.show()
效果图(情感各分数段呈现频率)

SnowNLP 情感剖析是基于情感词典实现的,其简略的将文本分为两类,踊跃和消极,返回值为情绪的概率,也就是情感评分在 [0,1] 之间,越靠近 1,情感体现越踊跃,越靠近 0,情感体现越消极。

正文完
 0