关于python:朴素贝叶斯分类器

37次阅读

共计 1356 个字符,预计需要花费 4 分钟才能阅读完成。

奢侈贝叶斯分类器

[toc]


介绍之前说一个悲伤的故事:因为是本人重新学习机器学习算法,学校期间好多无关机器学习算法的课程都没怎么解释这个算法,而且老师上课一言难尽!而后我加入研究生复试,被问到这个算法过后人都傻了,据说过然而本人真的没有认真去理解啊!害!被本人菜的一言难尽


数学实践

  • 先验概率

依据以往教训和剖析失去的概率

  • 条件概率(后验概率)

在事件 B 产生的条件下 A 在产生的概率

$$
P(A|B)=\frac{P(AB)}{p(A)}
$$

  • 奢侈贝叶斯定理
    直观了解:咱们假如 B 是咱们的特色标签 A 是咱们的分类标签。那么公式直观上的了解就是:咱们在具备 B 这么多的特色之后一个样本属于 A 的概率有多大

$$
P(A|B)=\frac{P(B_1|A)P(B_2|A)P(B_3|A)…P(B_n|A)P(A)}{P(B)}\\\text{公式中}P(B_i|A)\text{代表在训练集中}B_i 特色下属于 A 的概率
$$

此时问题来了:如果咱们的特色是非数字数据比如说:绿色、蓝色等那么咱们很容易就能够计算失去概率的计算,然而如果是具体数字呢?那么应该怎么计算呢?

  • 高斯奢侈贝叶斯

高斯分布:正态分布

$$
P(A|B)=\frac{1}{\sqrt{2\pi\sigma_{B}^{2}}}e^{-\frac{(A-\mu)^2}{2\sigma_{B}^{2}}}\\\mu: 均值 \sigma: 方差
$$

正态分布判断

奢侈贝叶斯

咱们先看对于他的解释:奢侈贝叶斯是一种建分类器的简略办法。该分类器模型会给问题实例调配用特征值示意的类标签,类标签取自无限汇合。它不是训练这种分类器的繁多算法,而是一系列基于雷同原理的算法:所有奢侈贝叶斯分类器都假设样本每个特色与其余特色都不相干。

https://zh.wikipedia.org/wiki/%E6%9C%B4%E7%B4%A0%E8%B4%9D%E5%…

从定义上看起来感觉很麻烦,其实奢侈贝叶斯算法的原理非常简略。咱们以如下例子为例:

假如训练集如下

性别身高(英尺)体重(磅)脚的尺寸(英寸)
618012
5.92 (5’11”)19011
5.58 (5’7″)17012
5.92 (5’11”)16510
51006
5.5 (5’6″)1508
5.42 (5’5″)1307
5.75 (5’9″)1509

咱们对训练集计算失去:

性别均值(身高)方差(体重)均值(体重)方差(体重)均值(脚的尺寸)方差(脚的尺寸)
5.8553.5033e-02176.251.2292e+0211.259.1667e-01
5.41759.7225e-02132.55.5833e+027.51.6667e+00

那么在给定如下样本进行判断:

  • 身高:6 体重:130 脚的尺寸:8
    如何计算呢?很简略!!!比如说咱们计算 \(P(身高 | 男性) \)咱们只须要将身高 6 代入到咱们的 高斯贝叶斯公式 外面就能够失去咱们的概率。咱们顺次计算体重、脚的尺寸就能够失去一系列的概率,而后咱们代入公式:

    $$
    P(男性)=\frac{P(男性)P(身高 | 男性)….}{P(A)}\\P(A)=P(男)*P(身高 | 男性)….+P(女性)*P(身高 | 女性)….\\P(男)=0.5=P(女)
    $$

而后判断男和女的概率大小进而判断是男性还是女性!

正文完
 0