BiLSTM+CRF
import torch
import torch.nn as nn
from modelgraph.BILSTM import BiLSTM
from itertools import zip_longest
class BiLSTM_CRF(nn.Module):
def __init__(self, vocab_size, emb_size, hidden_size, out_size):
super(BiLSTM_CRF, self).__init__()
self.bilstm = BiLSTM(vocab_size, emb_size, hidden_size, out_size)
self.transition = nn.Parameter(torch.ones(out_size, out_size) * 1 / out_size)
def forward(self, sents_tensor, lengths):
emission = self.bilstm(sents_tensor, lengths)
batch_size, max_len, out_size = emission.size()
crf_scores = emission.unsqueeze(2).expand(-1, -1, out_size, -1) + self.transition.unsqueeze(0)
return crf_scores
def test(self, test_sents_tensor, lengths, tag2id):
start_id = tag2id['<start>']
end_id = tag2id['<end>']
pad = tag2id['<pad>']
tagset_size = len(tag2id)
crf_scores =self.forward(test_sents_tensor, lengths)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
B , L , T, _ =crf_scores.size()
viterbi = torch.zeros(B, L, T).to(device)
backpointer = (torch.zeros(B, L, T).long() * end_id).to(device)
lengths = torch.LongTensor(lengths).to(device)
for step in range(L):
batch_size_t =(lengths > step).sum().item()
if step == 0:
viterbi[:batch_size_t, step, :] = crf_scores[: batch_size_t, step, start_id, :]
backpointer[:batch_size_t, step, :] = start_id
else:
max_scores, prev_tags = torch.max(viterbi[:batch_size_t, step-1, :].unsqueeze(2) + crf_scores[:batch_size_t, step, :, :], dim=1)
viterbi[:batch_size_t, step, :] = max_scores
backpointer[:batch_size_t, step, :] = prev_tags
backpointer = backpointer.view(B, -1)
tagids = []
tags_t = None
for step in range(L-1, 0, -1):
batch_size_t = (lengths > step).sum().item()
if step == L-1:
index = torch.ones(batch_size_t).long() * (step * tagset_size)
index = index.to(device)
index += end_id
else:
prev_batch_size_t = len(tags_t)
new_in_batch = torch.LongTensor([end_id] * (batch_size_t - prev_batch_size_t)).to(device)
offset = torch.cat([tags_t, new_in_batch], dim=0)
index = torch.ones(batch_size_t).long() * (step *tagset_size)
index = index.to(device)
index += offset.long()
try:
tags_t = backpointer[:batch_size_t].gather(dim=1, index=index.unsqueeze(1).long())
except RuntimeError:
import pdb
pdb.set_trace()
tags_t = tags_t.squeeze(1)
tagids.append(tags_t.tolist())
tagids = list(zip_longest(*reversed(tagids), fillvalue=pad))
tagids = torch.Tensor(tagids).long()
return tagids
def cal_lstm_crf_loss(crf_scores, targets, tag2id):
pad_id = tag2id.get('<pad>')
start_id = tag2id.get('<start>')
end_id = tag2id.get('<end>')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
batch_size, [货币代码](https://www.gendan5.com/currencycode.html)max_len = targets.size()
target_size = len(tag2id)
mask = (targets != pad_id)
lengths = mask.sum(dim=1)
targets = indexed(targets, target_size, start_id)
targets = targets.masked_select(mask)
flatten_scores = crf_scores.masked_select(mask.view(batch_size, max_len, 1, 1).expand_as(crf_scores)
).view(-1, target_size*target_size).contiguous()
golden_scores = flatten_scores.gather(dim=1, index=targets.unsqueeze(1)).sum()
scores_upto_t = torch.zeros(batch_size, target_size).to(device)
for t in range(max_len):
batch_size_t = (lengths > t).sum().item()
if t == 0:
scores_upto_t[:batch_size_t] = crf_scores[:batch_size_t,
t, start_id, :]
else:
scores_upto_t[:batch_size_t] = torch.logsumexp(crf_scores[:batch_size_t, t, :, :] +
scores_upto_t[:batch_size_t].unsqueeze(2),
dim=1
)
all_path_scores = scores_upto_t[:, end_id].sum()
loss = (all_path_scores - golden_scores) / batch_size
return loss
def indexed(targets, tagset_size, start_id):
batch_size, max_len = targets.size()
for col in range(max_len-1, 0, -1):
targets[:, col] += (targets[:, col-1] * tagset_size)
targets[:, 0] += (start_id * tagset_size)
return targets