关于pandas:数据分析实际案例之pandas在泰坦尼特号乘客数据中的使用

41次阅读

共计 7121 个字符,预计需要花费 18 分钟才能阅读完成。

简介

1912 年 4 月 15 日,号称永不沉没的泰坦尼克号因为和冰山相撞沉没了。因为没有足够的救济设施,2224 个乘客中有 1502 个乘客不幸遇难。事变曾经产生了,然而咱们能够从泰坦尼克号中的历史数据中发现一些数据法则吗?明天本文将会率领大家灵便的应用 pandas 来进行数据分析。

泰坦尼特号乘客数据

咱们从 kaggle 官网中下载了局部泰坦尼特号的乘客数据,次要蕴含上面几个字段:

变量名 含意 取值
survival 是否生还 0 = No, 1 = Yes
pclass 船票的级别 1 = 1st, 2 = 2nd, 3 = 3rd
sex 性别
Age 年龄
sibsp 配偶信息
parch 父母或者子女信息
ticket 船票编码
fare 船费
cabin 客舱编号
embarked 登录的港口 C = Cherbourg, Q = Queenstown, S = Southampton

下载下来的文件是一个 csv 文件。接下来咱们来看一下怎么应用 pandas 来对其进行数据分析。

应用 pandas 对数据进行剖析

引入依赖包

本文次要应用 pandas 和 matplotlib,所以须要首先进行上面的通用设置:

from numpy.random import randn
import numpy as np
np.random.seed(123)
import os
import matplotlib.pyplot as plt
import pandas as pd
plt.rc('figure', figsize=(10, 6))
np.set_printoptions(precision=4)
pd.options.display.max_rows = 20

读取和剖析数据

pandas 提供了一个 read_csv 办法能够很不便的读取一个 csv 数据,并将其转换为 DataFrame:

path = '../data/titanic.csv'
df = pd.read_csv(path)
df

咱们看下读入的数据:

PassengerId Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 892 3 Kelly, Mr. James male 34.5 0 0 330911 7.8292 NaN Q
1 893 3 Wilkes, Mrs. James (Ellen Needs) female 47.0 1 0 363272 7.0000 NaN S
2 894 2 Myles, Mr. Thomas Francis male 62.0 0 0 240276 9.6875 NaN Q
3 895 3 Wirz, Mr. Albert male 27.0 0 0 315154 8.6625 NaN S
4 896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female 22.0 1 1 3101298 12.2875 NaN S
5 897 3 Svensson, Mr. Johan Cervin male 14.0 0 0 7538 9.2250 NaN S
6 898 3 Connolly, Miss. Kate female 30.0 0 0 330972 7.6292 NaN Q
7 899 2 Caldwell, Mr. Albert Francis male 26.0 1 1 248738 29.0000 NaN S
8 900 3 Abrahim, Mrs. Joseph (Sophie Halaut Easu) female 18.0 0 0 2657 7.2292 NaN C
9 901 3 Davies, Mr. John Samuel male 21.0 2 0 A/4 48871 24.1500 NaN S
408 1300 3 Riordan, Miss. Johanna Hannah”” female NaN 0 0 334915 7.7208 NaN Q
409 1301 3 Peacock, Miss. Treasteall female 3.0 1 1 SOTON/O.Q. 3101315 13.7750 NaN S
410 1302 3 Naughton, Miss. Hannah female NaN 0 0 365237 7.7500 NaN Q
411 1303 1 Minahan, Mrs. William Edward (Lillian E Thorpe) female 37.0 1 0 19928 90.0000 C78 Q
412 1304 3 Henriksson, Miss. Jenny Lovisa female 28.0 0 0 347086 7.7750 NaN S
413 1305 3 Spector, Mr. Woolf male NaN 0 0 A.5. 3236 8.0500 NaN S
414 1306 1 Oliva y Ocana, Dona. Fermina female 39.0 0 0 PC 17758 108.9000 C105 C
415 1307 3 Saether, Mr. Simon Sivertsen male 38.5 0 0 SOTON/O.Q. 3101262 7.2500 NaN S
416 1308 3 Ware, Mr. Frederick male NaN 0 0 359309 8.0500 NaN S
417 1309 3 Peter, Master. Michael J male NaN 1 1 2668 22.3583 NaN C

418 rows × 11 columns

调用 df 的 describe 办法能够查看根本的统计信息:

PassengerId Pclass Age SibSp Parch Fare
count 418.000000 418.000000 332.000000 418.000000 418.000000 417.000000
mean 1100.500000 2.265550 30.272590 0.447368 0.392344 35.627188
std 120.810458 0.841838 14.181209 0.896760 0.981429 55.907576
min 892.000000 1.000000 0.170000 0.000000 0.000000 0.000000
25% 996.250000 1.000000 21.000000 0.000000 0.000000 7.895800
50% 1100.500000 3.000000 27.000000 0.000000 0.000000 14.454200
75% 1204.750000 3.000000 39.000000 1.000000 0.000000 31.500000
max 1309.000000 3.000000 76.000000 8.000000 9.000000 512.329200

如果要想查看乘客登录的港口,能够这样抉择:

df['Embarked'][:10]
0    Q
1    S
2    Q
3    S
4    S
5    S
6    Q
7    S
8    C
9    S
Name: Embarked, dtype: object

应用 value_counts 能够对其进行统计:

embark_counts=df['Embarked'].value_counts()
embark_counts[:10]
S    270
C    102
Q     46
Name: Embarked, dtype: int64

从后果能够看出,从 S 港口登录的乘客有 270 个,从 C 港口登录的乘客有 102 个,从 Q 港口登录的乘客有 46 个。

同样的,咱们能够统计一下 age 信息:

age_counts=df['Age'].value_counts()
age_counts.head(10)

前 10 位的年龄如下:

24.0    17
21.0    17
22.0    16
30.0    15
18.0    13
27.0    12
26.0    12
25.0    11
23.0    11
29.0    10
Name: Age, dtype: int64

计算一下年龄的平均数:

df['Age'].mean()
30.272590361445783

实际上有些数据是没有年龄的,咱们能够应用平均数对其填充:

clean_age1 = df['Age'].fillna(df['Age'].mean())
clean_age1.value_counts()

能够看出平均数是 30.27,个数是 86。

30.27259    86
24.00000    17
21.00000    17
22.00000    16
30.00000    15
18.00000    13
26.00000    12
27.00000    12
25.00000    11
23.00000    11
            ..
36.50000     1
40.50000     1
11.50000     1
34.00000     1
15.00000     1
7.00000      1
60.50000     1
26.50000     1
76.00000     1
34.50000     1
Name: Age, Length: 80, dtype: int64

应用平均数来作为年龄可能不是一个好主见,还有一种方法就是抛弃平均数:

clean_age2=df['Age'].dropna()
clean_age2
age_counts = clean_age2.value_counts()
ageset=age_counts.head(10)
ageset
24.0    17
21.0    17
22.0    16
30.0    15
18.0    13
27.0    12
26.0    12
25.0    11
23.0    11
29.0    10
Name: Age, dtype: int64

图形化示意和矩阵转换

图形化对于数据分析十分有帮忙,咱们对于下面得出的前 10 名的 age 应用柱状图来示意:

import seaborn as sns
sns.barplot(x=ageset.index, y=ageset.values)

接下来咱们来做一个简单的矩阵变换,咱们先来过滤掉 age 和 sex 都为空的数据:

cframe=df[df.Age.notnull() & df.Sex.notnull()]
cframe
PassengerId Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 892 3 Kelly, Mr. James male 34.5 0 0 330911 7.8292 NaN Q
1 893 3 Wilkes, Mrs. James (Ellen Needs) female 47.0 1 0 363272 7.0000 NaN S
2 894 2 Myles, Mr. Thomas Francis male 62.0 0 0 240276 9.6875 NaN Q
3 895 3 Wirz, Mr. Albert male 27.0 0 0 315154 8.6625 NaN S
4 896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female 22.0 1 1 3101298 12.2875 NaN S
5 897 3 Svensson, Mr. Johan Cervin male 14.0 0 0 7538 9.2250 NaN S
6 898 3 Connolly, Miss. Kate female 30.0 0 0 330972 7.6292 NaN Q
7 899 2 Caldwell, Mr. Albert Francis male 26.0 1 1 248738 29.0000 NaN S
8 900 3 Abrahim, Mrs. Joseph (Sophie Halaut Easu) female 18.0 0 0 2657 7.2292 NaN C
9 901 3 Davies, Mr. John Samuel male 21.0 2 0 A/4 48871 24.1500 NaN S
403 1295 1 Carrau, Mr. Jose Pedro male 17.0 0 0 113059 47.1000 NaN S
404 1296 1 Frauenthal, Mr. Isaac Gerald male 43.0 1 0 17765 27.7208 D40 C
405 1297 2 Nourney, Mr. Alfred (Baron von Drachstedt”)” male 20.0 0 0 SC/PARIS 2166 13.8625 D38 C
406 1298 2 Ware, Mr. William Jeffery male 23.0 1 0 28666 10.5000 NaN S
407 1299 1 Widener, Mr. George Dunton male 50.0 1 1 113503 211.5000 C80 C
409 1301 3 Peacock, Miss. Treasteall female 3.0 1 1 SOTON/O.Q. 3101315 13.7750 NaN S
411 1303 1 Minahan, Mrs. William Edward (Lillian E Thorpe) female 37.0 1 0 19928 90.0000 C78 Q
412 1304 3 Henriksson, Miss. Jenny Lovisa female 28.0 0 0 347086 7.7750 NaN S
414 1306 1 Oliva y Ocana, Dona. Fermina female 39.0 0 0 PC 17758 108.9000 C105 C
415 1307 3 Saether, Mr. Simon Sivertsen male 38.5 0 0 SOTON/O.Q. 3101262 7.2500 NaN S

332 rows × 11 columns

接下来应用 groupby 对 age 和 sex 进行分组:

by_sex_age = cframe.groupby(['Age', 'Sex'])
by_sex_age.size()
Age    Sex   
0.17   female    1
0.33   male      1
0.75   male      1
0.83   male      1
0.92   female    1
1.00   female    3
2.00   female    1
       male      1
3.00   female    1
5.00   male      1
                ..
60.00  female    3
60.50  male      1
61.00  male      2
62.00  male      1
63.00  female    1
       male      1
64.00  female    2
       male      1
67.00  male      1
76.00  female    1
Length: 115, dtype: int64

应用 unstack 将 Sex 的列数据变成行:

Sex female male
Age
0.17 1.0 0.0
0.33 0.0 1.0
0.75 0.0 1.0
0.83 0.0 1.0
0.92 1.0 0.0
1.00 3.0 0.0
2.00 1.0 1.0
3.00 1.0 0.0
5.00 0.0 1.0
6.00 0.0 3.0
58.00 1.0 0.0
59.00 1.0 0.0
60.00 3.0 0.0
60.50 0.0 1.0
61.00 0.0 2.0
62.00 0.0 1.0
63.00 1.0 1.0
64.00 2.0 1.0
67.00 0.0 1.0
76.00 1.0 0.0

79 rows × 2 columns

咱们把同样 age 的人数加起来,而后应用 argsort 进行排序,失去排序过后的 index:

indexer = agg_counts.sum(1).argsort()
indexer.tail(10)
Age
58.0    37
59.0    31
60.0    29
60.5    32
61.0    34
62.0    22
63.0    38
64.0    27
67.0    26
76.0    30
dtype: int64

从 agg_counts 中取出最初的 10 个,也就是最大的 10 个:

count_subset = agg_counts.take(indexer.tail(10))
count_subset=count_subset.tail(10)
count_subset
Sex female male
Age
29.0 5.0 5.0
25.0 1.0 10.0
23.0 5.0 6.0
26.0 4.0 8.0
27.0 4.0 8.0
18.0 7.0 6.0
30.0 6.0 9.0
22.0 10.0 6.0
21.0 3.0 14.0
24.0 5.0 12.0

下面的操作能够简化为上面的代码:

agg_counts.sum(1).nlargest(10)
Age
21.0    17.0
24.0    17.0
22.0    16.0
30.0    15.0
18.0    13.0
26.0    12.0
27.0    12.0
23.0    11.0
25.0    11.0
29.0    10.0
dtype: float64

将 count_subset 进行 stack 操作,不便前面的画图:

stack_subset = count_subset.stack()
stack_subset
Age   Sex   
29.0  female     5.0
      male       5.0
25.0  female     1.0
      male      10.0
23.0  female     5.0
      male       6.0
26.0  female     4.0
      male       8.0
27.0  female     4.0
      male       8.0
18.0  female     7.0
      male       6.0
30.0  female     6.0
      male       9.0
22.0  female    10.0
      male       6.0
21.0  female     3.0
      male      14.0
24.0  female     5.0
      male      12.0
dtype: float64
stack_subset.name = 'total'
stack_subset = stack_subset.reset_index()
stack_subset
Age Sex total
0 29.0 female 5.0
1 29.0 male 5.0
2 25.0 female 1.0
3 25.0 male 10.0
4 23.0 female 5.0
5 23.0 male 6.0
6 26.0 female 4.0
7 26.0 male 8.0
8 27.0 female 4.0
9 27.0 male 8.0
10 18.0 female 7.0
11 18.0 male 6.0
12 30.0 female 6.0
13 30.0 male 9.0
14 22.0 female 10.0
15 22.0 male 6.0
16 21.0 female 3.0
17 21.0 male 14.0
18 24.0 female 5.0
19 24.0 male 12.0

作图如下:

sns.barplot(x='total', y='Age', hue='Sex',  data=stack_subset)

本文例子能够参考:https://github.com/ddean2009/…

本文已收录于 http://www.flydean.com/01-pandas-titanic/

最艰深的解读,最粗浅的干货,最简洁的教程,泛滥你不

欢送关注我的公众号:「程序那些事」, 懂技术,更懂你!

正文完
 0