关于pandas:你必须知道的Pandas-解析json数据的函数jsonnormalize

38次阅读

共计 9507 个字符,预计需要花费 24 分钟才能阅读完成。

前言:Json 数据介绍

Json 是一个利用及其宽泛的用来传输和替换数据的格局,它被利用在数据库中,也被用于 API 申请后果数据集中。

尽管它利用宽泛,机器很容易浏览且节俭空间,然而却不利于人来浏览和进一步做数据分析,因而通常状况下须要在获取 json 数据后,将其转化为表格格局的数据,以不便人来浏览和了解。

常见的 Json 数据格式有 2 种,均以键值对的模式存储数据,只是包装数据的办法有所差别:

a. 个别 JSON 对象

采纳 {} 将键值对数据括起来,有时候会有多层{}

b. JSON 对象列表

采纳 []JSON 对象 括起来,造成一个 JSON 对象的列表,JSON 对象中同样会有多层 {},也会有[] 呈现,造成 嵌套列表

这篇文章次要讲述 pandas 内置的 Json 数据转换方法json_normalize(),它能够对以上两种 Json 格局的数据进行解析,最终生成DataFrame,进而对数据进行更多操作。本文的次要解构如下:

  • 解析一个最根本的 Json- 解析一个带有多层数据的 Json- 解析一个带有嵌套列表的 Json- 当 Key 不存在时如何疏忽零碎报错 - 应用 sep 参数为嵌套 Json 的 Key 设置分隔符 - 为嵌套列表数据和元数据增加前缀 - 通过 URL 获取 Json 数据并进行解析 - 探索:解析带有 多个嵌套列表 的 Json

json_normalize()函数参数解说

在进行代码演示前先导入相应依赖库,未装置 pandas 库的请自行装置(此代码在 Jupyter Notebook 环境中运行)。

from pandas import json_normalize
import pandas as pd

1. 解析一个最根本的 Json

a. 解析个别 Json 对象

a_dict = {<!-- -->
    'school': 'ABC primary school',
    'location': 'London',
    'ranking': 2
}
pd.json_normalize(a_dict)

输入后果为:

b. 解析一个 Json 对象列表

json_list = [{<!-- -->'class': 'Year 1', 'student number': 20, 'room': 'Yellow'},
    {<!-- -->'class': 'Year 2', 'student number': 25, 'room': 'Blue'}
]
pd.json_normalize(json_list)

输入后果为:

2. 解析一个带有多层数据的 Json

a. 解析一个有多层数据的 Json 对象

json_obj = {<!-- -->
    'school': 'ABC primary school',
    'location': 'London',
    'ranking': 2,
    'info': {<!-- -->
        'president': 'John Kasich',
        'contacts': {<!-- -->
            'email': {<!-- -->
                'admission': 'admission@abc.com',
                'general': 'info@abc.com'
            },
            'tel': '123456789',
        }
    }
}
pd.json_normalize(json_obj)

输入后果为:

多层 key 之间应用点隔开,展现了所有的数据,这曾经解析了 3 层,上述写法和 pd.json_normalize(json_obj, max_level=3) 等价。

如果设置 max_level=1,则输入后果为下图所示,contacts 局部的数据会集成了一列

如果设置 max_level=2,则输入后果为下图所示,contacts 下的email 局部的数据会集成了一列

b. 解析一个有多层数据的 Json 对象列表

json_list = [
    {<!-- -->
        'class': 'Year 1',
        'student count': 20,
        'room': 'Yellow',
        'info': {<!-- -->
            'teachers': {<!-- -->
                'math': 'Rick Scott',
                'physics': 'Elon Mask'
            }
        }
    },
    {<!-- -->
        'class': 'Year 2',
        'student count': 25,
        'room': 'Blue',
        'info': {<!-- -->
            'teachers': {<!-- -->
                'math': 'Alan Turing',
                'physics': 'Albert Einstein'
            }
        }
    }
]
pd.json_normalize(json_list)

输入后果为:

若别离将 max_level 设置为 23,则输入后果应别离是什么?请自行尝试~

3. 解析一个带有嵌套列表的 Json

json_obj = {<!-- -->
    'school': 'ABC primary school',
    'location': 'London',
    'ranking': 2,
    'info': {<!-- -->
        'president': 'John Kasich',
        'contacts': {<!-- -->
            'email': {<!-- -->
                'admission': 'admission@abc.com',
                'general': 'info@abc.com'
            },
            'tel': '123456789',
        }
    },
    'students': [{<!-- -->'name': 'Tom'},
        {<!-- -->'name': 'James'},
        {<!-- -->'name': 'Jacqueline'}
    ],
}
pd.json_normalize(json_obj)

此例中 students 键对应的值是一个 列表 ,应用[] 括起来。间接采纳上述的办法进行解析,则失去的后果如下:

students局部的数据并未被胜利解析,此时能够为 record_path 设置值即可,调用形式为 pd.json_normalize(json_obj, record_path='students'),在此调用形式下,失去的后果只蕴含了name 局部的数据。

若要减少其余字段的信息,则需为 meta 参数赋值,例如下述调用形式下,失去的后果如下:

pd.json_normalize(json_obj, record_path='students', meta=['school', 'location', ['info', 'contacts', 'tel'], ['info', 'contacts', 'email', 'general']])

4. 当 Key 不存在时如何疏忽零碎报错

data = [
    {<!-- --> 
        'class': 'Year 1', 
        'student count': 20, 
        'room': 'Yellow',
        'info': {<!-- -->
            'teachers': {<!-- --> 
                'math': 'Rick Scott', 
                'physics': 'Elon Mask',
            }
        },
        'students': [{<!-- --> 'name': 'Tom', 'sex': 'M'},
            {<!-- --> 'name': 'James', 'sex': 'M'},
        ]
    },
    {<!-- --> 
        'class': 'Year 2', 
        'student count': 25, 
        'room': 'Blue',
        'info': {<!-- -->
            'teachers': {<!-- --> 
                 # no math teacher
                 'physics': 'Albert Einstein'
            }
        },
        'students': [{<!-- --> 'name': 'Tony', 'sex': 'M'},
            {<!-- --> 'name': 'Jacqueline', 'sex': 'F'},
        ]
    },
]
pd.json_normalize(
    data, 
    record_path =['students'], 
    meta=['class', 'room', ['info', 'teachers', 'math']]
)

class 等于 Year 2 的 Json 对象中,teachers下的 math 键不存在,间接运行上述代码会报以下谬误,提醒 math 键并不总是存在,且给出了相应倡议:Try running with errors='ignore'

增加 errors 条件后,从新运行得出的后果如下图所示,没有 math 键的局部应用 NaN 进行了填补。

pd.json_normalize(
    data, 
    record_path =['students'], 
    meta=['class', 'room', ['info', 'teachers', 'math']],
    errors='ignore'
)

5. 应用 sep 参数为嵌套 Json 的 Key 设置分隔符

2.a 的案例中,能够留神到输入后果的具备多层 key 的数据列题目是采纳 . 对多层 key 进行分隔的,能够为 sep 赋值以更改分隔符。

json_obj = {<!-- -->
    'school': 'ABC primary school',
    'location': 'London',
    'ranking': 2,
    'info': {<!-- -->
        'president': 'John Kasich',
        'contacts': {<!-- -->
          'email': {<!-- -->
              'admission': 'admission@abc.com',
              'general': 'info@abc.com'
          },
          'tel': '123456789',
      }
    }
}
pd.json_normalize(json_obj, sep='-&gt;')

输入后果为:

6. 为嵌套列表数据和元数据增加前缀

3 例的输入后果中,各列名均无前缀,例如 name 这一列不知是元数据解析失去的数据,还是通过 student 嵌套列表的的出的数据,因而为 record_prefixmeta_prefix参数别离赋值,即可为输入后果增加相应前缀。

json_obj = {<!-- -->
    'school': 'ABC primary school',
    'location': 'London',
    'ranking': 2,
    'info': {<!-- -->
        'president': 'John Kasich',
        'contacts': {<!-- -->
            'email': {<!-- -->
                'admission': 'admission@abc.com',
                'general': 'info@abc.com'
            },
            'tel': '123456789',
        }
    },
    'students': [{<!-- -->'name': 'Tom'},
        {<!-- -->'name': 'James'},
        {<!-- -->'name': 'Jacqueline'}
    ],
}
pd.json_normalize(json_obj, record_path='students',
                  meta=['school', 'location', ['info', 'contacts', 'tel'], ['info', 'contacts', 'email', 'general']],
                  record_prefix='students-&gt;',
                  meta_prefix='meta-&gt;',
                  sep='-&gt;')

本例中,为嵌套列表数据增加 students-&gt; 前缀,为元数据增加 meta-&gt; 前缀,将嵌套 key 之间的分隔符批改为-&gt;,输入后果为:

7. 通过 URL 获取 Json 数据并进行解析

通过 URL 获取数据须要用到 requests 库,请自行装置相应库。

import requests
from pandas import json_normalize
# 通过天气 API,获取深圳近 7 天的天气
url = 'https://tianqiapi.com/free/week'
# 传入 url,并设定好相应的 params
r = requests.get(url, params={<!-- -->"appid":"59257444", "appsecret":"uULlTGV9", 'city':'深圳'})
# 将获取到的值转换为 json 对象
result = r.json()
df = json_normalize(result, meta=['city', 'cityid', 'update_time'], record_path=['data'])
df

result 的后果如下所示,其中 data 为一个嵌套列表:

{<!-- -->'cityid': '101280601',
 'city': '深圳',
 'update_time': '2021-08-09 06:39:49',
 'data': [{<!-- -->'date': '2021-08-09',
   'wea': '中雨转雷阵雨',
   'wea_img': 'yu',
   'tem_day': '32',
   'tem_night': '26',
   'win': '无继续风向',
   'win_speed': '&lt;3 级'},
  {<!-- -->'date': '2021-08-10',
   'wea': '雷阵雨',
   'wea_img': 'yu',
   'tem_day': '32',
   'tem_night': '27',
   'win': '无继续风向',
   'win_speed': '&lt;3 级'},
  {<!-- -->'date': '2021-08-11',
   'wea': '雷阵雨',
   'wea_img': 'yu',
   'tem_day': '31',
   'tem_night': '27',
   'win': '无继续风向',
   'win_speed': '&lt;3 级'},
  {<!-- -->'date': '2021-08-12',
   'wea': '多云',
   'wea_img': 'yun',
   'tem_day': '33',
   'tem_night': '27',
   'win': '无继续风向',
   'win_speed': '&lt;3 级'},
  {<!-- -->'date': '2021-08-13',
   'wea': '多云',
   'wea_img': 'yun',
   'tem_day': '33',
   'tem_night': '27',
   'win': '无继续风向',
   'win_speed': '&lt;3 级'},
  {<!-- -->'date': '2021-08-14',
   'wea': '多云',
   'wea_img': 'yun',
   'tem_day': '32',
   'tem_night': '27',
   'win': '无继续风向',
   'win_speed': '&lt;3 级'},
  {<!-- -->'date': '2021-08-15',
   'wea': '多云',
   'wea_img': 'yun',
   'tem_day': '32',
   'tem_night': '27',
   'win': '无继续风向',
   'win_speed': '&lt;3 级'}]}

解析后的输入后果为:

8. 探索:解析带有 多个嵌套列表 的 Json

当一个 Json 对象或对象列表中有超过一个嵌套列表时,record_path无奈将所有的嵌套列表蕴含进去,因为它只能接管一个 key 值。此时,咱们须要先依据多个嵌套列表的 key 将 Json 解析成多个 DataFrame,再将这些DataFrame 依据理论关联条件拼接起来,并去除反复值。

json_obj = {<!-- -->
    'school': 'ABC primary school',
    'location': 'shenzhen',
    'ranking': 2,
    'info': {<!-- -->
        'president': 'John Kasich',
        'contacts': {<!-- -->
            'email': {<!-- -->
                'admission': 'admission@abc.com',
                'general': 'info@abc.com'
            },
            'tel': '123456789',
        }
    },
    'students': [{<!-- -->'name': 'Tom'},
        {<!-- -->'name': 'James'},
        {<!-- -->'name': 'Jacqueline'}
    ],
    # 增加 university 嵌套列表,加上 students, 该 JSON 对象中就有 2 个嵌套列表了
    'university': [{<!-- -->'university_name': 'HongKong university shenzhen'},
        {<!-- -->'university_name': 'zhongshan university shenzhen'},
        {<!-- -->'university_name': 'shenzhen university'}
    ],
}
# 尝试在 record_path 中写上两个嵌套列表的名字,即 record_path = ['students', 'university], 后果杯水车薪
# 于是决定分两次进行解析,别离将 record_path 设置成为 university 和 students, 最终将 2 个后果合并起来
df1 = pd.json_normalize(json_obj, record_path=['university'],
                        meta=['school', 'location', ['info', 'contacts', 'tel'],
                              ['info', 'contacts', 'email', 'general']],
                        record_prefix='university-&gt;',
                        meta_prefix='meta-&gt;',
                        sep='-&gt;')
df2 = pd.json_normalize(json_obj, record_path=['students'],
                        meta=['school', 'location', ['info', 'contacts', 'tel'],
                              ['info', 'contacts', 'email', 'general']],
                        record_prefix='students-&gt;',
                        meta_prefix='meta-&gt;',
                        sep='-&gt;')
# 将两个后果依据 index 关联起来并去除反复列
df1.merge(df2, how='left', left_index=True, right_index=True, suffixes=['-&gt;', '-&gt;']).T.drop_duplicates().T

输入后果为:

途中红框标出来的局部为 Json 对象中所对应的两个嵌套列表。

总结

json_normalize()办法异样弱小,简直涵盖了所有解析 JSON 的场景,波及到一些更简单场景时,能够给予已有的性能进行发散整合,例如 8. 探索 中遇到的问题一样。

领有了这个弱小的 Json 解析库,当前再也不怕遇到简单的 Json 数据了!

正文完
 0