IO 模型
IO 模型就是说用什么样的通道进行数据的发送和接管,Java 共反对 3 种网络编程 IO 模式:BIO,NIO,AIO
BIO (Blocking IO)
同步阻塞 IO 模型,一个客户端对应一个服务端
服务端:
@Slf4j
public class BIOServer {public static void main(String[] args) throws IOException {ServerSocket serverSocket = new ServerSocket(8080);
while (true) {log.info("服务端已启动,期待连贯");
// 阻塞
Socket socket = serverSocket.accept();
log.info("客户端已连贯");
// 单线程解决链接
// handler(socket);
// 多线程解决链接
new Thread(new Runnable() {
@SneakyThrows
@Override
public void run() {log.info("local-thread-{}", Thread.currentThread().getName());
handler(socket);
}
}).start();}
}
private static void handler(Socket socket) throws IOException {byte[] bytes = new byte[1024];
log.info("获取客户端发送数据");
// 接收数据,阻塞办法,没有数据可读时就阻塞
int read = socket.getInputStream().read(bytes);
if (read != -1) {log.info("接管客户数据: {}", new String(bytes, 0, read));
}
// 响应客户端
OutputStream outputStream = socket.getOutputStream();
outputStream.write("server is connecting".getBytes());
outputStream.flush();}
}
客户端:
@Slf4j
public class BIOClient {
private static final String HOST = "localhost";
private static final int PORT = 8080;
public static void main(String[] args) throws IOException {Socket socket = new Socket(HOST, PORT);
// 发送数据
OutputStream os = socket.getOutputStream();
os.write("request server connect".getBytes());
os.flush();
// 接收数据
byte[] bytes = new byte[1024];
InputStream is = socket.getInputStream();
int read = is.read(bytes);
if (read != -1) {log.info("接管到来自服务端的数据: {}", new String(bytes, 0, read));
}
socket.close();}
}
毛病
- 1、IO 代码里
read
操作是阻塞操作,如果连贯不做数据读写操作会导致线程阻塞,浪费资源 - 2、如果线程很多,会导致服务器线程太多,压力太大,比方 C10K 问题
利用场景
BIO 形式实用于连贯数目比拟小且固定的架构,这种形式对服务器资源要求比拟高,但程序简略易了解。
NIO (NON Blocking IO)
同步非阻塞 IO 模型,服务器实现模式为一个线程能够解决多个申请 (连贯),客户端发送的连贯申请都会注册到多路复用器selector
上,
多路复用器轮询到连贯有 IO 申请就进行解决,JDK1.4 开始引入。
一般模型:
@Slf4j
public class NIOServer {static List<SocketChannel> channelList = Lists.newArrayList();
public static void main(String[] args) throws IOException {
// 创立 NIO 通道
ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
// 绑定服务端口地址
serverSocketChannel.socket().bind(new InetSocketAddress(8080));
// 设置通道为非阻塞模式
serverSocketChannel.configureBlocking(false);
log.info("服务端已启动,期待连贯");
while (true) {// 非阻塞模式 accept() 办法不会阻塞。阻塞模式则会阻塞,即 socketChannel.configureBlocking(ture)
// NIO 的非阻塞是由操作系统外部实现的,底层调用了 linux 内核的 accept 函数
SocketChannel socketChannel = serverSocketChannel.accept();
if (!ObjectUtils.isEmpty(socketChannel)) {log.info("客户端已连贯: {}", socketChannel.getRemoteAddress());
socketChannel.configureBlocking(false);
// 连贯胜利放到 channelList 中
channelList.add(socketChannel);
}
// 读取 channel
Iterator<SocketChannel> iterator = channelList.iterator();
while (iterator.hasNext()) {SocketChannel channel = iterator.next();
ByteBuffer byteBuffer = ByteBuffer.allocate(128);
// 非阻塞模式 read() 办法不会阻塞。阻塞模式则会阻塞
int read = channel.read(byteBuffer);
if (read > 0) {log.info("接管客户 {}, 数据: {}", channel.getRemoteAddress(), new String(byteBuffer.array()));
} else if (read < 0) {
//
iterator.remove();
log.info("客户端已断开连接");
}
}
}
}
}
如上,如果有很多连贯,每一个连贯都须要通过 iterator
遍历获取数据,如果该连贯无数据发送,则会产生很多无用的遍历。
多路复用器模型:
@Slf4j
public class NIOSelectorServer {public static void main(String[] args) throws IOException {
// 创立 NIO 通道
ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
// 绑定服务端口地址
serverSocketChannel.socket().bind(new InetSocketAddress(8080));
// 设置通道为非阻塞模式
serverSocketChannel.configureBlocking(false);
// 关上 Selector 解决 Channel,即创立 epoll
Selector selector = Selector.open();
// Channel 注册到 selector 上,并 selector 对客户端 accept 操作监听
serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);
log.info("服务端已启动,期待连贯");
while (true) {
// 阻塞期待须要解决的事件产生
selector.select();
// 获取 selector 中注册的全副事件中的 selectedKeys 实例
Set<SelectionKey> selectionKeys = selector.selectedKeys();
Iterator<SelectionKey> keyIterator = selectionKeys.iterator();
// 遍历对 selectionKeys 事件进行解决
while (keyIterator.hasNext()) {SelectionKey selectionKey = keyIterator.next();
// 是 OP_ACCEPT 事件,则进行后续的获取数据和事件注册
if (selectionKey.isAcceptable()) {ServerSocketChannel serverSocket = (ServerSocketChannel) selectionKey.channel();
SocketChannel socketChannel = serverSocket.accept();
socketChannel.configureBlocking(false);
// 注册 OP_READ 事件,须要给客户端发送数据,则注册 OP_WRITE 即可
socketChannel.register(selector, SelectionKey.OP_READ);
log.info("客户端已连贯: {}", socketChannel.getRemoteAddress());
// 是 OP_READ 事件,则获取客户端发送的数据
} else if (selectionKey.isReadable()) {SocketChannel socketChannel = (SocketChannel) selectionKey.channel();
ByteBuffer byteBuffer = ByteBuffer.allocate(128);
int read = socketChannel.read(byteBuffer);
if (read > 0) {log.info("接管客户 {}, 数据: {}", socketChannel.getRemoteAddress(), new String(byteBuffer.array()));
} else if (read < 0) {socketChannel.close();
log.info("客户端已断开连接");
}
}
// selectionKeys 没有对应事件即移除,避免下次 seletor 反复解决
keyIterator.remove();}
}
}
}
NIO 有三大外围组件:Channel(通道),Buffer(缓冲区),Selector(多路复用器)
1、channel
相似于流,每个 channel
对应一个 buffer
缓冲区,buffer
底层就是个数组
2、channel
会注册到 selector
上,由 selector
依据 channel
读写事件的产生将其交由某个闲暇的线程解决
3、NIO 的 Buffer
和 channel
都是既能够读也能够写
利用场景
NIO 形式实用于连贯数目多且连贯比拟短(轻操作)的架构,比方聊天服务器,弹幕零碎,服务器间通信,编程比较复杂
AIO (NIO 2.0)
异步非阻塞,由操作系统实现后回调告诉服务端程序启动线程去解决,个别实用于连接数较多且连接时间较长的利用
异步模型:
@Slf4j
public class AIOServer {public static void main(String[] args) throws IOException, InterruptedException {AsynchronousServerSocketChannel assc = AsynchronousServerSocketChannel.open().bind(new InetSocketAddress(8080));
assc.accept(null, new CompletionHandler<AsynchronousSocketChannel, Object>() {
@SneakyThrows
@Override
public void completed(AsynchronousSocketChannel socketChannel, Object attachment) {log.info("connet -- {}", Thread.currentThread().getName());
// 在此接管客户端连贯,否则前面的客户端连贯不上服务端
assc.accept(attachment, this);
log.info("客户端:{}", socketChannel.getRemoteAddress());
ByteBuffer byteBuffer = ByteBuffer.allocate(1024);
socketChannel.read(byteBuffer, byteBuffer, new CompletionHandler<Integer, ByteBuffer>() {
@Override
public void completed(Integer result, ByteBuffer attachment) {log.info("read -- {}", Thread.currentThread().getName());
byteBuffer.flip();
log.info("客户端申请数据:{}", new String(byteBuffer.array(), 0, result));
socketChannel.write(ByteBuffer.wrap("This is response data".getBytes()));
}
@Override
public void failed(Throwable exc, ByteBuffer attachment) {log.error("read error: {}", exc.getMessage());
exc.printStackTrace();}
});
}
@Override
public void failed(Throwable exc, Object attachment) {log.error("connect error: {}", exc.getMessage());
exc.printStackTrace();}
});
log.info("main -- {}", Thread.currentThread().getName());
Thread.sleep(Integer.MAX_VALUE);
}
}
利用场景
AIO 形式实用于连贯数目多且连贯比拟长 (重操作) 的架构,JDK7 开始反对
比照
材料
【公众号】网络 IO 演变倒退过程和模型介绍
【B 站视频】IO 多路复用底层原理全解
收录工夫: 2021/02/24