关于美团:情感分析技术在美团的探索与应用

42次阅读

共计 4304 个字符,预计需要花费 11 分钟才能阅读完成。

2021 年 5 月,美团 NLP 核心开源了迄今规模最大的基于实在场景的中文属性级情感剖析数据集 ASAP,该数据集相干论文被自然语言解决顶会 NAACL2021 录用,同时该数据集退出中文开源数据打算千言,将与其余开源数据集一起推动中文信息处理技术的提高。本文回顾了美团情感剖析技术的演进和在典型业务场景中的利用,包含篇章 / 句子级情感剖析、属性级情感剖析和观点三元组剖析。在业务利用上,依靠情感剖析技术能力构建了在线实时预测服务和离线批量预测服务。截至目前,情感剖析服务曾经为美团外部十多个业务场景提供了服务。



参考文献

  • [1] https://github.com/Meituan-Di…
  • [2] Bu J, Ren L, Zheng S, et al. ASAP: A Chinese Review Dataset Towards Aspect Category Sentiment Analysis and Rating Prediction. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021.
  • [3] https://www.luge.ai/
  • [4] Zhang, L. , S. Wang , and B. Liu . “Deep Learning for Sentiment Analysis : A Survey.” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery (2018):e1253.
  • [5] Liu, Bing. “Sentiment analysis and opinion mining.” Synthesis lectures on human language technologies 5.1 (2012): 1-167.
  • [6] Peng, Haiyun, et al. “Knowing what, how and why: A near complete solution for aspect-based sentiment analysis.” In Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. No. 05. 2020.
  • [7] Zhang, Chen, et al. “A Multi-task Learning Framework for Opinion Triplet Extraction.” In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings. 2020.
  • [8] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.
  • [9] Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li,Hongwei Hao, and Bo Xu. 2016. Attention-based bidirectional long short-term memory networks for relation classification. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 207–212.
  • [10] Devlin, Jacob, et al.“Bert: Pre-training of deep bidirectional transformers for language understanding.”arXiv preprint arXiv:1810.04805 (2018).
  • [11] 杨扬、佳昊等. 美团 BERT 的摸索和实际.
  • [12] Pontiki, Maria, et al. “Semeval-2016 task 5: Aspect based sentiment analysis.” International workshop on semantic evaluation. 2016.
  • [13] Pontiki, M. , et al. “SemEval-2014 Task 4: Aspect Based Sentiment Analysis.” In Proceedings of International Workshop on Semantic Evaluation at (2014).
  • [14] Yequan Wang, Minlie Huang, and Li Zhao. 2016. Attention-based lstm for aspect-level sentiment classification. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 606–615.
  • [15] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. 2017. Dynamic routing between capsules. In Advances in neural information processing systems, pages 3856–3866.
  • [16] Chi Sun, Luyao Huang, and Xipeng Qiu. 2019. Utilizing bert for aspect-based sentiment analysis via constructing auxiliary sentence. arXiv preprint arXiv:1903.09588.
  • [17] Qingnan Jiang, Lei Chen, Ruifeng Xu, Xiang Ao, and Min Yang. 2019. A challenge dataset and effective models for aspect-based sentiment analysis. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6281–6286.
  • [18] Wu, Zhen, et al. “Grid Tagging Scheme for End-to-End Fine-grained Opinion Extraction.” In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings. 2020.
  • [19] Liu, Yinhan, et al. “Roberta: A robustly optimized bert pretraining approach.” arXiv preprint arXiv:1907.11692 (2019).
  • [20] Clark, Kevin, et al. “Electra: Pre-training text encoders as discriminators rather than generators.” arXiv preprint arXiv:2003.10555 (2020).
    0- [21] Timothy Dozat and Christopher D. Manning. 2017.Deep biaffine attention for neural dependency parsing. In 5th International Conference on Learning Representations, ICLR 2017.

作者介绍

任磊、佳昊、张辰、杨扬、梦雪、马放、金刚、武威等,均来自美团平台搜寻与 NLP 部 NLP 核心。

招聘信息

美团搜寻与 NLP 部 /NLP 核心是负责美团人工智能技术研发的外围团队,使命是打造世界一流的自然语言解决核心技术和服务能力。

NLP 核心长期招聘自然语言解决算法专家 / 机器学习算法专家,感兴趣的同学能够将简历发送至 renlei04@meituan.com。具体要求如下。

岗位职责

  1. 预训练语言模型前瞻摸索,包含但不限于常识驱动预训练、工作型预训练、多模态模型预训练以及跨语言预训练等方向;
  2. 负责百亿参数以上超大模型的训练与性能优化;
  3. 模型精调前瞻技术摸索,包含但不限于 Prompt Tuning、Adapter Tuning 以及各种 Parameter-efficient 的迁徙学习等方向;
  4. 模型 inference/training 压缩技术前瞻摸索,包含但不限于量化、剪枝、张量分析、KD 以及 NAS 等;
  5. 实现预训练模型在搜寻、举荐、广告等业务场景中的利用并实现业务指标;
  6. 参加美团外部 NLP 平台建设和推广

岗位要求

  1. 2 年以上相干工作教训,参加过搜寻、举荐、广告至多其一畛域的算法开发工作,关注行业及学界停顿;
  2. 扎实的算法根底,相熟自然语言解决、常识图谱和机器学习技术,对技术开发及利用有激情;
  3. 相熟 Python/Java 等编程语言,有肯定的工程能力;
  4. 相熟 Tensorflow、PyTorch 等深度学习框架并有理论我的项目教训;
  5. 相熟 RNN/CNN/Transformer/BERT/GPT 等 NLP 模型并有过理论我的项目教训;
  6. 指标感强,长于剖析和发现问题,拆解简化,可能从日常工作中发现新的空间;
  7. 条理性强且有推动力,可能梳理繁冗的工作并建设无效机制,推动上下游配合实现指标。

加分项

  1. 相熟模型训练各 Optimizer 基本原理,理解分布式训练根本办法与框架;
  2. 对于最新训练减速办法有所理解,例如混合精度训练、低比特训练、分布式梯度压缩等

浏览美团技术团队更多技术文章合集

前端 | 算法 | 后端 | 数据 | 平安 | 运维 | iOS | Android | 测试

|  在公众号菜单栏对话框回复【2020 年货】、【2019 年货】、【2018 年货】、【2017 年货】等关键词,可查看美团技术团队历年技术文章合集。

| 本文系美团技术团队出品,著作权归属美团。欢送出于分享和交换等非商业目标转载或应用本文内容,敬请注明“内容转载自美团技术团队”。本文未经许可,不得进行商业性转载或者应用。任何商用行为,请发送邮件至 tech@meituan.com 申请受权。

正文完
 0