本文由 RT-Thread 论坛用户 @BruceOu 原创公布:https://club.rt-thread.org/ask/article/3043.html
相熟 RT-Thread 的敌人都晓得,RT-Thread 提供了许多 BSP,但不是所有的板子都能找到相应的 BSP,这时就须要移植新的 BSP。RT-Thread 的所有 BSP 中,最欠缺的 BSP 就是 STM32 系列,但从 2020 年下半年开始,国内呈现前所未有的芯片缺货潮,芯片的交期和价格一直拉升,STM32 的价格也是水涨船高,很多敌人也在思考应用国产代替,笔者应用的兆易翻新的 GD32 系列,我看了下 RT-Thread 中 GD 系列 BSP,都是玩家各自为政,每个人都是提交本人应用的板子的 BSP,充斥着大量冗余的代码,对于有强迫症的我就十分不爽,就依据手头的板子,参看 STM32 的 BSP 架构,构建了 GD32 的 BSP 架构。
笔者应用的开发板是兆易翻新设计的 GD32407V-START 开发板。其主控芯片为 GD32F407VKT6,主频 168MHz,外部 3072K Flash,192KB SRAM,资源相当丰盛。
1 BSP 框架制作
在具体移植 GD32407V-START 的 BSP 之前,先做好 GD32 的 BSP 架构。BSP 框架结构如下图所示:
GD32 的 BSP 架构次要分为三个局部:libraries、tools 和具体的 Boards,其中 libraries 蕴含了 GD32 的通用库,包含每个系列的 HAL 以及适配 RT-Thread 的 drivers;tools 是生成工程的 Python 脚本工具;另外就是 Boards 文件,当然这里的 Boards 有很多,我这里值列举了 GD32407V-START。
这里先谈谈 libraries 和 tools 的构建,而后在后文独自探讨具体板级 BSP 的制作。
1.1 Libraries 构建
Libraries 文件夹蕴含兆易翻新提供的 HAL 库,这个间接在兆易翻新的官网就能够下载。
下载地址
而后将 HAL 库复制到 libraries 目录下,重命名为 GD32F4xx_HAL,其余的系列相似。
GD32F4xx_HAL 就是官网的文件,根本是不必动的,只是在文件夹中须要增加构建工程的脚本文件 SConscript,其实也就是 Python 脚本。
SConscript 文件的内容如下:
import rtconfig #导包
from building import *
# get current directory
cwd = GetCurrentDir() #获取当然门路
# The set of source files associated with this SConscript file.
src = Split('''
CMSIS/GD/GD32F4xx/Source/system_gd32f4xx.c
GD32F4xx_standard_peripheral/Source/gd32f4xx_gpio.c
GD32F4xx_standard_peripheral/Source/gd32f4xx_rcu.c
GD32F4xx_standard_peripheral/Source/gd32f4xx_exti.c
GD32F4xx_standard_peripheral/Source/gd32f4xx_misc.c
GD32F4xx_standard_peripheral/Source/gd32f4xx_syscfg.c
''')# 将括号中的字符串宰割后成列表(list),以便蕴含到工程中
if GetDepend(['RT_USING_SERIAL']):# 如果关上了 RT_USING_SERIAL 的宏,则会蕴含以下源文件
src += ['GD32F4xx_standard_peripheral/Source/gd32f4xx_usart.c']
if GetDepend(['RT_USING_I2C']):
src += ['GD32F4xx_standard_peripheral/Source/gd32f4xx_i2c.c']
if GetDepend(['RT_USING_SPI']):
src += ['GD32F4xx_standard_peripheral/Source/gd32f4xx_spi.c']
if GetDepend(['RT_USING_CAN']):
src += ['GD32F4xx_standard_peripheral/Source/gd32f4xx_can.c']
if GetDepend(['BSP_USING_ETH']):
src += ['GD32F4xx_standard_peripheral/Source/gd32f4xx_enet.c']
if GetDepend(['RT_USING_ADC']):
src += ['GD32F4xx_standard_peripheral/Source/gd32f4xx_adc.c']
if GetDepend(['RT_USING_DAC']):
src += ['GD32F4xx_standard_peripheral/Source/gd32f4xx_dac.c']
if GetDepend(['RT_USING_RTC']):
src += ['GD32F4xx_standard_peripheral/Source/gd32f4xx_rtc.c']
if GetDepend(['RT_USING_WDT']):
src += ['GD32F4xx_standard_peripheral/Source/gd32f4xx_wwdgt.c']
src += ['GD32F4xx_standard_peripheral/Source/gd32f4xx_fwdgt.c']
if GetDepend(['RT_USING_SDIO']):
src += ['GD32F4xx_standard_peripheral/Source/gd32f4xx_sdio.c']
#头文件门路
path = [
cwd + '/CMSIS/GD/GD32F4xx/Include',
cwd + '/CMSIS',
cwd + '/GD32F4xx_standard_peripheral/Include',]
CPPDEFINES = ['USE_STDPERIPH_DRIVER']
#定义一个组,组名为 'Libraries', depend 为空示意依赖任何一个其余宏,另外以后的头文件门路增加到工程中
group = DefineGroup('Libraries', src, depend = [''], CPPPATH = path, CPPDEFINES = CPPDEFINES)
Return('group')
该文件次要的作用就是增加库文件和头文件门路,一部分文件是属于根底文件,因而间接调用 Python 库的 Split 蕴含,另外一部分文件是依据理论的利用需要增加的。
这里是以 GDF4 来举例的,其余系列的都是相似的。
接下来说说 Kconfig 文件,这里是对内核和组件的性能进行配置,对 RT-Thread 的组件进行自在裁剪。
如果应用 RT-Thread studio,则通过 RT-Thread Setting 能够体现 Kconfig 文件的作用。
如果应用 ENV 环境,则在应用 menuconfig 配置和裁剪 RT-Thread 时体现。
前面所有的 Kconfig 文件都是一样的逻辑。下表列举一些罕用的 Kconfig 句法规定。
Kconfig 的语法规定网上材料很多,自行去学习吧。
bsp/gd32/Kconfig 内容如下:
config SOC_FAMILY_GD32
bool
config SOC_SERIES_GD32F4
bool
select ARCH_ARM_CORTEX_M4
select SOC_FAMILY_GD32
因为该架构目前笔者只移植了 GDF4 的,因而这里的内容比拟少,如果有些的系列,间接参考 F4 的配置例子在这里加就能够了。
最初谈谈 HAL_Drivers,这个文件夹就是 GD32 的外设驱动文件夹,为下层利用提供调用接口。
目前只有串口和 GPIO 的驱动,该文件夹是整个 GD32 共用的,因而在编写和批改都要谨慎。对于 drv_xxx 文件在后句具体移植 BSP 的时候解说,这里次要将整体架构,SConscript 和 Kconfig 的作用和后面的一样,只是具体的内容不同罢了。
好了,先看 bsp/gd32/HAL_Drivers/SConscript 文件。
Import('RTT_ROOT')
Import('rtconfig')
from building import *
cwd = GetCurrentDir()# 获取以后门路
# add the general drivers.
src = Split("""""")# 增加独特的驱动文件,暂无
# add pin drivers.
if GetDepend('RT_USING_PIN'):
src += ['drv_gpio.c']
if GetDepend(['RT_USING_SERIAL']):
src += ['drv_usart.c']
path = [cwd]
group = DefineGroup('Drivers', src, depend = [''], CPPPATH = path)
Return('group')
和 GD32F4xx_HAL 文件夹中的 SConscript 是相似的。
bsp/gd32/HAL_Drivers/Kconfig 文件构造如下:
if BSP_USING_USBD
config BSP_USBD_TYPE_FS
bool
# "USB Full Speed (FS) Core"
config BSP_USBD_TYPE_HS
bool
# "USB High Speed (HS) Core"
config BSP_USBD_SPEED_HS
bool
# "USB High Speed (HS) Mode"
config BSP_USBD_SPEED_HSINFS
bool
# "USB High Speed (HS) Core in FS mode"
config BSP_USBD_PHY_EMBEDDED
bool
# "Using Embedded phy interface"
config BSP_USBD_PHY_UTMI
bool
# "UTMI: USB 2.0 Transceiver Macrocell Interace"
config BSP_USBD_PHY_ULPI
bool
# "ULPI: UTMI+ Low Pin Interface"
endif
1.2 Tools 构建
该文件夹就是工程构建的脚本,
import os
import sys
import shutil
cwd_path = os.getcwd()
sys.path.append(os.path.join(os.path.dirname(cwd_path), 'rt-thread', 'tools'))
# BSP dist function
def dist_do_building(BSP_ROOT, dist_dir):
from mkdist import bsp_copy_files
import rtconfig
print("=> copy gd32 bsp library")
library_dir = os.path.join(dist_dir, 'libraries')
library_path = os.path.join(os.path.dirname(BSP_ROOT), 'libraries')
bsp_copy_files(os.path.join(library_path, rtconfig.BSP_LIBRARY_TYPE),
os.path.join(library_dir, rtconfig.BSP_LIBRARY_TYPE))
print("=> copy bsp drivers")
bsp_copy_files(os.path.join(library_path, 'HAL_Drivers'), os.path.join(library_dir, 'HAL_Drivers'))
shutil.copyfile(os.path.join(library_path, 'Kconfig'), os.path.join(library_dir, 'Kconfig'))
以上代码很简略,次要应用了 Python 的 OS 模块的 join 函数,该函数的作用就是连贯两个或更多的路径名。最初将 BSP 依赖的文件复制到指定目录下。
在应用 scons –dist 命令打包的时候,就是依赖的该脚本,生成的 dist 文件夹的工程到任何目录下应用,也就是将 BSP 相干的库以及内核文件提取进去,能够将该工程任意拷贝。
1.3 gd32407v-start 构建
该文件夹就 gd32407v-start 的具体 BSP 文件,文件构造如下:
在前面将具体解说如何构建该局部内容。
2 BSP 移植
2.1 Keil 环境筹备
目前市面通用的 MDK for ARM 版本有 Keil 4 和 Keil 5:应用 Keil 4 倡议装置 4.74 及以上;应用 Keil 5 倡议装置 5.20 以上版本。笔者的 MDK 是 5.30。
从 MDK 的官网能够下载失去 MDK 的安装包,而后装置即可,对于的 MDK 装置请看笔者的教程。
MDK 装置教程:https://blog.csdn.net/bruceox…
MDK 下载地址:https://www.keil.com/download…
装置实现后会主动关上,咱们将其敞开。
接下来咱们下载 GD32F30x 的软件反对包。
下载地址:http://www.gd32mcu.com/cn/dow…
下载好后双击 GigaDevice.GD32F4xx_DFP.2.1.0.pack 运行即可:
点击 [Next] 即可装置实现。
装置胜利后,从新关上 Keil,则能够在 File->Device Database 中呈现 Gigadevice 的下拉选项,点击能够查看到相应的型号。
2.2 BSP 工程制作
1. 构建根底工程
首先看看 RT-Thread 代码仓库中已有很多 BSP,而我要移植的是 Cortex-M4 内核。这里我找了一个类似的内核,把它复制一份,并批改文件名为:gd32407v-start。这样就有一个根底的工程。而后就开始增删改查,实现最终的 BSP,简直所有的 BSP 的制作都是如此。
2. 批改 BSP 构建脚本
bsp/gd32/gd32407v-start/Kconfig 批改后的内容如下:
mainmenu "RT-Thread Configuration"
config BSP_DIR
string
option env="BSP_ROOT"
default "."
config RTT_DIR
string
option env="RTT_ROOT"
default "../../.."
config PKGS_DIR
string
option env="PKGS_ROOT"
default "packages"
source "$RTT_DIR/Kconfig"
source "$PKGS_DIR/Kconfig"
source "../libraries/Kconfig"
source "board/Kconfig"
该文件是获取所有门路下的 Kconfig。
bsp/gd32/gd32407v-start/SConscript 批改后的内容如下:
# for module compiling
import os
Import('RTT_ROOT')
from building import *
cwd = GetCurrentDir()
objs = []
list = os.listdir(cwd)
for d in list:
path = os.path.join(cwd, d)
if os.path.isfile(os.path.join(path, 'SConscript')):
objs = objs + SConscript(os.path.join(d, 'SConscript'))
Return('objs')
该文件是用于遍历当前目录的所有文件夹。
bsp/gd32/gd32407v-start/SConstruct 批改后的内容如下:
import os
import sys
import rtconfig
if os.getenv('RTT_ROOT'):
RTT_ROOT = os.getenv('RTT_ROOT')
else:
RTT_ROOT = os.path.normpath(os.getcwd() + '/../../..')
sys.path = sys.path + [os.path.join(RTT_ROOT, 'tools')]
try:
from building import *
except:
print('Cannot found RT-Thread root directory, please check RTT_ROOT')
print(RTT_ROOT)
exit(-1)
TARGET = 'rtthread.' + rtconfig.TARGET_EXT
DefaultEnvironment(tools=[])
env = Environment(tools = ['mingw'],
AS = rtconfig.AS, ASFLAGS = rtconfig.AFLAGS,
CC = rtconfig.CC, CCFLAGS = rtconfig.CFLAGS,
AR = rtconfig.AR, ARFLAGS = '-rc',
CXX = rtconfig.CXX, CXXFLAGS = rtconfig.CXXFLAGS,
LINK = rtconfig.LINK, LINKFLAGS = rtconfig.LFLAGS)
env.PrependENVPath('PATH', rtconfig.EXEC_PATH)
if rtconfig.PLATFORM == 'iar':
env.Replace(CCCOM = ['$CC $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS -o $TARGET $SOURCES'])
env.Replace(ARFLAGS = [''])
env.Replace(LINKCOM = env["LINKCOM"] + '--map rtthread.map')
Export('RTT_ROOT')
Export('rtconfig')
SDK_ROOT = os.path.abspath('./')
if os.path.exists(SDK_ROOT + '/libraries'):
libraries_path_prefix = SDK_ROOT + '/libraries'
else:
libraries_path_prefix = os.path.dirname(SDK_ROOT) + '/libraries'
SDK_LIB = libraries_path_prefix
Export('SDK_LIB')
# prepare building environment
objs = PrepareBuilding(env, RTT_ROOT, has_libcpu=False)
gd32_library = 'GD32F4xx_HAL'
rtconfig.BSP_LIBRARY_TYPE = gd32_library
# include libraries
objs.extend(SConscript(os.path.join(libraries_path_prefix, gd32_library, 'SConscript')))
# include drivers
objs.extend(SConscript(os.path.join(libraries_path_prefix, 'HAL_Drivers', 'SConscript')))
# make a building
DoBuilding(TARGET, objs)
该文件用于链接所有的依赖文件,并调用 make 进行编译。
3. 批改开发环境信息
bsp/gd32/gd32407v-start/cconfig.h 批改后的内容如下:
#ifndef CCONFIG_H__
#define CCONFIG_H__
/* Automatically generated file; DO NOT EDIT. */
/* compiler configure file for RT-Thread in GCC*/
#define HAVE_NEWLIB_H 1
#define LIBC_VERSION "newlib 2.4.0"
#define HAVE_SYS_SIGNAL_H 1
#define HAVE_SYS_SELECT_H 1
#define HAVE_PTHREAD_H 1
#define HAVE_FDSET 1
#define HAVE_SIGACTION 1
#define GCC_VERSION_STR "5.4.1 20160919 (release) [ARM/embedded-5-branch revision 240496]"
#define STDC "2011"
#endif
该文件是是编译 BSP 的环境信息,需依据实时批改。
4. 批改 KEIL 的模板工程
双击:template.uvprojx 即可批改模板工程。
批改为对应芯片设施:
批改 FLASH 和 RAM 的配置:
批改可执行文件名字:
批改默认调试工具:CMSIS-DAP Debugger。
批改编程算法:GD32F4xx FMC。
5. 批改 board 文件夹
(1) 批改 bsp/gd32/gd32407v-start/board/linker_scripts/link.icf
批改后的内容如下:
/*###ICF### Section handled by ICF editor, don't touch! ****/
/*-Editor annotation file-*/
/* IcfEditorFile="$TOOLKIT_DIR$\config\ide\IcfEditor\cortex_v1_0.xml" */
/*-Specials-*/
define symbol __ICFEDIT_intvec_start__ = 0x08000000;
/*-Memory Regions-*/
define symbol __ICFEDIT_region_ROM_start__ = 0x08000000;
define symbol __ICFEDIT_region_ROM_end__ = 0x082FFFFF;
define symbol __ICFEDIT_region_RAM_start__ = 0x20000000;
define symbol __ICFEDIT_region_RAM_end__ = 0x2002FFFF;
/*-Sizes-*/
define symbol __ICFEDIT_size_cstack__ = 0x2000;
define symbol __ICFEDIT_size_heap__ = 0x2000;
/**** End of ICF editor section. ###ICF###*/
export symbol __ICFEDIT_region_RAM_end__;
define symbol __region_RAM1_start__ = 0x10000000;
define symbol __region_RAM1_end__ = 0x1000FFFF;
define memory mem with size = 4G;
define region ROM_region = mem:[from __ICFEDIT_region_ROM_start__ to __ICFEDIT_region_ROM_end__];
define region RAM_region = mem:[from __ICFEDIT_region_RAM_start__ to __ICFEDIT_region_RAM_end__];
define region RAM1_region = mem:[from __region_RAM1_start__ to __region_RAM1_end__];
define block CSTACK with alignment = 8, size = __ICFEDIT_size_cstack__ { };
define block HEAP with alignment = 8, size = __ICFEDIT_size_heap__ { };
initialize by copy {readwrite};
do not initialize {section .noinit};
keep {section FSymTab};
keep {section VSymTab};
keep {section .rti_fn*};
place at address mem:__ICFEDIT_intvec_start__ {readonly section .intvec};
place in ROM_region {readonly};
place in RAM_region { readwrite,
block CSTACK, block HEAP };
place in RAM1_region {section .sram};
该文件是 IAR 编译的链接脚本,依据《GD32F407xx_Datasheet_Rev2.1》可知,GD32F407VKT6 的 flash 大小为 3072KB,SRAM 大小为 192KB,因而须要设置 ROM 和 RAM 的起始地址和堆栈大小等。
(2) 批改 bsp/gd32/gd32407v-start/board/linker_scripts/link.ld
批改后的内容如下:
/* Program Entry, set to mark it as "used" and avoid gc */
MEMORY
{CODE (rx) : ORIGIN = 0x08000000, LENGTH = 3072k /* 3072KB flash */
DATA (rw) : ORIGIN = 0x20000000, LENGTH = 192k /* 192KB sram */
}
ENTRY(Reset_Handler)
_system_stack_size = 0x200;
SECTIONS
{
.text :
{. = ALIGN(4);
_stext = .;
KEEP(*(.isr_vector)) /* Startup code */
. = ALIGN(4);
*(.text) /* remaining code */
*(.text.*) /* remaining code */
*(.rodata) /* read-only data (constants) */
*(.rodata*)
*(.glue_7)
*(.glue_7t)
*(.gnu.linkonce.t*)
/* section information for finsh shell */
. = ALIGN(4);
__fsymtab_start = .;
KEEP(*(FSymTab))
__fsymtab_end = .;
. = ALIGN(4);
__vsymtab_start = .;
KEEP(*(VSymTab))
__vsymtab_end = .;
. = ALIGN(4);
/* section information for initial. */
. = ALIGN(4);
__rt_init_start = .;
KEEP(*(SORT(.rti_fn*)))
__rt_init_end = .;
. = ALIGN(4);
. = ALIGN(4);
_etext = .;
} > CODE = 0
/* .ARM.exidx is sorted, so has to go in its own output section. */
__exidx_start = .;
.ARM.exidx :
{*(.ARM.exidx* .gnu.linkonce.armexidx.*)
/* This is used by the startup in order to initialize the .data secion */
_sidata = .;
} > CODE
__exidx_end = .;
/* .data section which is used for initialized data */
.data : AT (_sidata)
{. = ALIGN(4);
/* This is used by the startup in order to initialize the .data secion */
_sdata = . ;
*(.data)
*(.data.*)
*(.gnu.linkonce.d*)
. = ALIGN(4);
/* This is used by the startup in order to initialize the .data secion */
_edata = . ;
} >DATA
.stack :
{
. = . + _system_stack_size;
. = ALIGN(4);
_estack = .;
} >DATA
__bss_start = .;
.bss :
{. = ALIGN(4);
/* This is used by the startup in order to initialize the .bss secion */
_sbss = .;
*(.bss)
*(.bss.*)
*(COMMON)
. = ALIGN(4);
/* This is used by the startup in order to initialize the .bss secion */
_ebss = . ;
*(.bss.init)
} > DATA
__bss_end = .;
_end = .;
/* Stabs debugging sections. */
.stab 0 : {*(.stab) }
.stabstr 0 : {*(.stabstr) }
.stab.excl 0 : {*(.stab.excl) }
.stab.exclstr 0 : {*(.stab.exclstr) }
.stab.index 0 : {*(.stab.index) }
.stab.indexstr 0 : {*(.stab.indexstr) }
.comment 0 : {*(.comment) }
/* DWARF debug sections.
* Symbols in the DWARF debugging sections are relative to the beginning
* of the section so we begin them at 0. */
/* DWARF 1 */
.debug 0 : {*(.debug) }
.line 0 : {*(.line) }
/* GNU DWARF 1 extensions */
.debug_srcinfo 0 : {*(.debug_srcinfo) }
.debug_sfnames 0 : {*(.debug_sfnames) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges 0 : {*(.debug_aranges) }
.debug_pubnames 0 : {*(.debug_pubnames) }
/* DWARF 2 */
.debug_info 0 : {*(.debug_info .gnu.linkonce.wi.*) }
.debug_abbrev 0 : {*(.debug_abbrev) }
.debug_line 0 : {*(.debug_line) }
.debug_frame 0 : {*(.debug_frame) }
.debug_str 0 : {*(.debug_str) }
.debug_loc 0 : {*(.debug_loc) }
.debug_macinfo 0 : {*(.debug_macinfo) }
/* SGI/MIPS DWARF 2 extensions */
.debug_weaknames 0 : {*(.debug_weaknames) }
.debug_funcnames 0 : {*(.debug_funcnames) }
.debug_typenames 0 : {*(.debug_typenames) }
.debug_varnames 0 : {*(.debug_varnames) }
}
该文件是 GCC 编译的链接脚本,依据《GD32F407xx_Datasheet_Rev2.1》可知,GD32F407VKT6 的 flash 大小为 3072KB,SRAM 大小为 192KB,因而 CODE 和 DATA 的 LENGTH 别离设置为 3072KB 和 192KB,其余芯片相似,但其实地址都是一样的。
(3) 批改 bsp/gd32/gd32407v-start/board/linker_scripts/link.sct
该文件是 MDK 的连贯脚本,依据《GD32F407xx_Datasheet_Rev2.1》手册,因而须要将 LR_IROM1 和 ER_IROM1 的参数设置为 0x00300000;RAM 的大小为 192k,因而须要将 RW_IRAM1 的参数设置为 0x00030000。
; *************************************************************
; *** Scatter-Loading Description File generated by uVision ***
; *************************************************************
LR_IROM1 0x08000000 0x00300000 { ; load region size_region
ER_IROM1 0x08000000 0x00300000 { ; load address = execution address
*.o (RESET, +First)
*(InRoot$$Sections)
.ANY (+RO)
}
RW_IRAM1 0x20000000 0x00030000 { ; RW data
.ANY (+RW +ZI)
}
}
(4) 批改 bsp/gd32/gd32407v-start/board/board.h 文件
批改后内容如下:
#ifndef __BOARD_H__
#define __BOARD_H__
#include "gd32f4xx.h"
#include "drv_usart.h"
#include "drv_gpio.h"
#include "gd32f4xx_exti.h"
#define EXT_SDRAM_BEGIN (0xC0000000U) /* the begining address of external SDRAM */
#define EXT_SDRAM_END (EXT_SDRAM_BEGIN + (32U * 1024 * 1024)) /* the end address of external SDRAM */
// <o> Internal SRAM memory size[Kbytes] <8-64>
// <i>Default: 64
#ifdef __ICCARM__
// Use *.icf ram symbal, to avoid hardcode.
extern char __ICFEDIT_region_RAM_end__;
#define GD32_SRAM_END &__ICFEDIT_region_RAM_end__
#else
#define GD32_SRAM_SIZE 192
#define GD32_SRAM_END (0x20000000 + GD32_SRAM_SIZE * 1024)
#endif
#ifdef __CC_ARM
extern int Image$$RW_IRAM1$$ZI$$Limit;
#define HEAP_BEGIN (&Image$$RW_IRAM1$$ZI$$Limit)
#elif __ICCARM__
#pragma section="HEAP"
#define HEAP_BEGIN (__segment_end("HEAP"))
#else
extern int __bss_end;
#define HEAP_BEGIN (&__bss_end)
#endif
#define HEAP_END GD32_SRAM_END
#endif
值得注意的是,不同的编译器规定的堆栈内存的起始地址 HEAP_BEGIN 和完结地址 HEAP_END。这里 HEAP_BEGIN 和 HEAP_END 的值须要和后面的链接脚本是统一的,须要结合实际去批改。
(5) 批改 bsp/gd32/gd32407v-start/board/board.c 文件
批改后的文件如下:
#include <stdint.h>
#include <rthw.h>
#include <rtthread.h>
#include <board.h>
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler */
/* User can add his own implementation to report the HAL error return state */
while (1)
{ }
/* USER CODE END Error_Handler */
}
/** System Clock Configuration
*/
void SystemClock_Config(void)
{SysTick_Config(SystemCoreClock / RT_TICK_PER_SECOND);
NVIC_SetPriority(SysTick_IRQn, 0);
}
/**
* This is the timer interrupt service routine.
*
*/
void SysTick_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
rt_tick_increase();
/* leave interrupt */
rt_interrupt_leave();}
/**
* This function will initial GD32 board.
*/
void rt_hw_board_init()
{
/* NVIC Configuration */
#define NVIC_VTOR_MASK 0x3FFFFF80
#ifdef VECT_TAB_RAM
/* Set the Vector Table base location at 0x10000000 */
SCB->VTOR = (0x10000000 & NVIC_VTOR_MASK);
#else /* VECT_TAB_FLASH */
/* Set the Vector Table base location at 0x08000000 */
SCB->VTOR = (0x08000000 & NVIC_VTOR_MASK);
#endif
SystemClock_Config();
#ifdef RT_USING_COMPONENTS_INIT
rt_components_board_init();
#endif
#ifdef RT_USING_CONSOLE
rt_console_set_device(RT_CONSOLE_DEVICE_NAME);
#endif
#ifdef BSP_USING_SDRAM
rt_system_heap_init((void *)EXT_SDRAM_BEGIN, (void *)EXT_SDRAM_END);
#else
rt_system_heap_init((void *)HEAP_BEGIN, (void *)HEAP_END);
#endif
}
该文件重点关注的就是 SystemClock_Config 配置,SystemCoreClock 的定义在 system_gd32f4xx.c 中定义的。
(6) 批改 bsp/gd32/gd32407v-start/board/Kconfig 文件
批改后内容如下:
menu "Hardware Drivers Config"
config SOC_GD32407V
bool
select SOC_SERIES_GD32F4
select RT_USING_COMPONENTS_INIT
select RT_USING_USER_MAIN
default y
menu "Onboard Peripheral Drivers"
endmenu
menu "On-chip Peripheral Drivers"
config BSP_USING_GPIO
bool "Enable GPIO"
select RT_USING_PIN
default y
menuconfig BSP_USING_UART
bool "Enable UART"
default y
select RT_USING_SERIAL
if BSP_USING_UART
config BSP_USING_UART1
bool "Enable UART1"
default y
config BSP_UART1_RX_USING_DMA
bool "Enable UART1 RX DMA"
depends on BSP_USING_UART1 && RT_SERIAL_USING_DMA
default n
endif
menuconfig BSP_USING_SPI
bool "Enable SPI BUS"
default n
select RT_USING_SPI
if BSP_USING_SPI
config BSP_USING_SPI1
bool "Enable SPI1 BUS"
default n
config BSP_SPI1_TX_USING_DMA
bool "Enable SPI1 TX DMA"
depends on BSP_USING_SPI1
default n
config BSP_SPI1_RX_USING_DMA
bool "Enable SPI1 RX DMA"
depends on BSP_USING_SPI1
select BSP_SPI1_TX_USING_DMA
default n
endif
menuconfig BSP_USING_I2C1
bool "Enable I2C1 BUS (software simulation)"
default n
select RT_USING_I2C
select RT_USING_I2C_BITOPS
select RT_USING_PIN
if BSP_USING_I2C1
config BSP_I2C1_SCL_PIN
int "i2c1 scl pin number"
range 1 216
default 24
config BSP_I2C1_SDA_PIN
int "I2C1 sda pin number"
range 1 216
default 25
endif
source "../libraries/HAL_Drivers/Kconfig"
endmenu
menu "Board extended module Drivers"
endmenu
endmenu
这个文件就是配置板子驱动的,这里可依据理论需要增加。
(7) 批改 bsp/gd32/gd32407v-start/board/SConscript 文件
批改后内容如下:
import os
import rtconfig
from building import *
Import('SDK_LIB')
cwd = GetCurrentDir()
# add general drivers
src = Split('''board.c''')
path = [cwd]
startup_path_prefix = SDK_LIB
if rtconfig.CROSS_TOOL == 'gcc':
src += [startup_path_prefix + '/GD32F4xx_HAL/CMSIS/GD/GD32F4xx/Source/GCC/startup_gd32f4xx.S']
elif rtconfig.CROSS_TOOL == 'keil':
src += [startup_path_prefix + '/GD32F4xx_HAL/CMSIS/GD/GD32F4xx/Source/ARM/startup_gd32f4xx.s']
elif rtconfig.CROSS_TOOL == 'iar':
src += [startup_path_prefix + '/GD32F4xx_HAL/CMSIS/GD/GD32F4xx/Source/IAR/startup_gd32f4xx.s']
CPPDEFINES = ['GD32F407xx']
group = DefineGroup('Drivers', src, depend = [''], CPPPATH = path, CPPDEFINES = CPPDEFINES)
Return('group')
该文件次要增加 board 文件夹的.c 文件和头文件门路。另外依据开发环境抉择相应的汇编文件,和后面的 libraries 的 SConscript 语法是一样,文件的构造都是相似的,这里就没有正文了。
到这里,根本所有的依赖脚本都配置实现了,接下来将通过 menuconfig 配置工程。
6.menuconfig 配置
敞开套接字形象层。
敞开网络设备接口。
敞开 LWIP 协定栈。
GD32407V-START 板载没有以太网,因而这里次要是敞开网络相干的内容,当然 GD32407V-START 的资源丰盛,不关这些其实也不影响,如果是其余 MCU,依据理论需要自行批改吧。
7. 驱动批改
一个根本的 BSP 中,串口是必不可少的,所以还须要编写串口驱动,这里应用的串口 2 作为调试串口。
板子上还有 LED 灯,次要要编写 GPIO 驱动即可。
对于串口和 LED 的驱动能够查看源码,这里就不贴出来了。
8. 利用开发
笔者在 applications 的 main.c 中增加 LED 的利用代码,
#include <stdio.h>
#include <rtthread.h>
#include <rtdevice.h>
#include <board.h>
/* defined the LED2 pin: PC6 */
#define LED2_PIN GET_PIN(C, 6)
int main(void)
{
int count = 1;
/* set LED2 pin mode to output */
rt_pin_mode(LED2_PIN, PIN_MODE_OUTPUT);
while (count++)
{rt_pin_write(LED2_PIN, PIN_HIGH);
rt_thread_mdelay(500);
rt_pin_write(LED2_PIN, PIN_LOW);
rt_thread_mdelay(500);
}
return RT_EOK;
}
当然,这须要 GPIO 驱动的反对。
9. 应用 ENV 编译工程
在 env 中执行:scons
编译胜利打印信息如下:
10. 应用 env 生成 MDK 工程
在 env 中执行:scons –target=mdk5
生成 MDK 工程后,关上 MDK 工程进行编译
胜利编译打印信息如下:
【注】笔者没有 IAR 环境,有趣味的敌人自行去开发吧。
【注】GD32407V-START 开发板还有两个 USB 接口,前面有空在思考做到 BSP 外面吧,目前自有 GPIO 和串口,当然啦,像 SPI 等驱动也会一步一步集成进来,敬请期待吧。
2.3 应用 GD-Link 下载调试 GD32
后面应用 ENV 和 MDK 胜利编译可 BSP,那么接下来就是下载调试环节,下载须要下载器,而 GD32 局部开发板自带 GD-link,能够用开发板上自带的 GD-link 调试仿真代码,不带的可外接 GD-link 模块,还是很不便的。具体操作办法如下。
1. 第一次应用 GD-link 插入电脑后,会主动装置驱动。
在 Options for Target -> Debug 中抉择“CMSIS-DAP Debugger”,局部客户反馈找不到这一驱动器选项,那是因为 MDK 版本过低,只有 Keil4.74 以上的版本和 Keil5 才反对 CMSIS-DAP Debugger 选项。
2. 在 Options for Target -> Debug ->Settings 勾选 SWJ、Port 抉择 SW。右框 IDcode 会呈现”0xXBAXXXXX”。
3. 在 Options for Target -> Debug ->Settings -> Flash Download 中增加 GD32 的 flash 算法。
4. 单击下图的快捷方式“debug”,即可应用 GD-Link 进行仿真。
当然啦,也可应用 GD-Link 下载程序。
下载程序胜利后,打印信息如下:
接上串口,打印信息如下:
同时 LED 会一直闪动。
2.4 RT-Thread studio 开发
当然,该工程也可导出应用 rt-thread studio 开发。
先应用 scons –dist 导出工程。
再将工程导入 rt-thread studio 中
最初,就可在 rt-thread studio 就可进行开发工作了。
当然啦,前面也可在 rt-thread studio 中新建工程时抉择笔者提交的 GD32407V-START 的 BSP。
对于 BSP 的移植就到这里了,当然还有很多内容,这里只是抛砖引玉。最初心愿更多的敌人退出进来,为国产 RTOS 奉献本人的力量吧。
以上代码曾经提交到 RT-Thread 中。
BSP 地址