数据挖掘实际(金融风控):金融风控之贷款守约预测挑战赛(下篇)[xgboots/lightgbm/Catboost 等模型]– 模型交融:stacking、blending
相干文章:数据挖掘实际(金融风控):金融风控之贷款守约预测挑战赛(上篇)
数据挖掘机器学习专栏
4. 建模与调参
我的项目链接以及码源见文末
4.1 模型比照与性能评估
4.1.1 逻辑回归
-
长处
- 训练速度较快,分类的时候,计算量仅仅只和特色的数目相干;
- 简略易了解,模型的可解释性十分好,从特色的权重能够看到不同的特色对最初后果的影响;
- 适宜二分类问题,不须要缩放输出特色;
- 内存资源占用小,只须要存储各个维度的特征值;
-
毛病
- 逻辑回归须要事后解决缺失值和异样值【可参考 task3 特色工程】;
- 不能用 Logistic 回归去解决非线性问题,因为 Logistic 的决策面是线性的;
- 对多重共线性数据较为敏感,且很难解决数据不均衡的问题;
- 准确率并不是很高,因为模式非常简单,很难去拟合数据的实在散布;
4.1.2 决策树模型
-
长处
- 简略直观,生成的决策树能够可视化展现
- 数据不须要预处理,不须要归一化,不须要解决缺失数据
- 既能够解决离散值,也能够解决间断值
-
毛病
- 决策树算法非常容易过拟合,导致泛化能力不强(可进行适当的剪枝)
- 采纳的是贪婪算法,容易失去部分最优解
4.1.3 集成模型集成办法(ensemble method)
通过组合多个学习器来实现学习工作,通过集成办法,能够将多个弱学习器组合成一个强分类器,因而集成学习的泛化能力个别比繁多分类器要好。
集成办法次要包含 Bagging 和 Boosting,Bagging 和 Boosting 都是将已有的分类或回归算法通过肯定形式组合起来,造成一个更加弱小的分类。两种办法都是把若干个分类器整合为一个分类器的办法,只是整合的形式不一样,最终失去不一样的成果。常见的基于 Baggin 思维的集成模型有:随机森林、基于 Boosting 思维的集成模型有:Adaboost、GBDT、XgBoost、LightGBM 等。
Baggin 和 Boosting 的区别总结如下:
- 样本抉择上: Bagging 办法的训练集是从原始集中有放回的选取,所以从原始集中选出的各轮训练集之间是独立的;而 Boosting 办法须要每一轮的训练集不变,只是训练集中每个样本在分类器中的权重发生变化。而权值是依据上一轮的分类后果进行调整
- 样例权重上: Bagging 办法应用平均取样,所以每个样本的权重相等;而 Boosting 办法依据错误率一直调整样本的权值,错误率越大则权重越大
- 预测函数上: Bagging 办法中所有预测函数的权重相等;而 Boosting 办法中每个弱分类器都有相应的权重,对于分类误差小的分类器会有更大的权重
- 并行计算上: Bagging 办法中各个预测函数能够并行生成;而 Boosting 办法各个预测函数只能程序生成,因为后一个模型参数须要前一轮模型的后果。
4.1.4 模型评估办法
对于模型来说,其在训练集下面的误差咱们称之为 训练误差 或者 教训误差 ,而在测试集上的误差称之为 测试误差。
对于咱们来说,咱们更关怀的是模型对于新样本的学习能力,即咱们心愿通过对已有样本的学习,尽可能的将所有潜在样本的普遍规律学到手,而如果模型对训练样本学的太好,则有可能把训练样本本身所具备的一些特点当做所有潜在样本的广泛特点,这时候咱们就会呈现 过拟合 的问题。
因而咱们通常将已有的数据集划分为训练集和测试集两局部,其中训练集用来训练模型,而测试集则是用来评估模型对于新样本的判断能力。
对于数据集的划分,咱们通常要保障满足以下两个条件:
- 训练集和测试集的散布要与样本实在散布统一,即训练集和测试集都要保障是从样本实在散布中独立同散布采样而得;
- 训练集和测试集要互斥
对于数据集的划分有三种办法:留出法,穿插验证法和自助法,上面挨个介绍:
-
①留出法
留出法是间接将数据集 D 划分为两个互斥的汇合,其中一个汇合作为训练集 S,另一个作为测试集 T。须要留神的是在划分的时候要尽可能保障数据分布的一致性,即防止因数据划分过程引入额定的偏差而对最终后果产生影响。为了保障数据分布的一致性,通常咱们采纳 分层采样 的形式来对数据进行采样。
Tips: 通常,会将数据集 D 中大概 2 /3~4/ 5 的样本作为训练集,其余的作为测试集。
-
②穿插验证法
k 折穿插验证 通常将数据集 D 分为 k 份,其中 k - 1 份作为训练集,残余的一份作为测试集,这样就能够取得 k 组训练 / 测试集,能够进行 k 次训练与测试,最终返回的是 k 个测试后果的均值。穿插验证中数据集的划分仍然是根据 分层采样 的形式来进行。
对于穿插验证法,其 k 值的选取往往决定了评估后果的稳定性和保真性,通常 k 值选取 10。
当 k = 1 的时候,咱们称之为 留一法
-
③自助法
咱们每次从数据集 D 中取一个样本作为训练集中的元素,而后把该样本放回,反复该行为 m 次,这样咱们就能够失去大小为 m 的训练集,在这外面有的样本反复呈现,有的样本则没有呈现过,咱们把那些没有呈现过的样本作为测试集。
进行这样采样的起因是因为在 D 中约有 36.8% 的数据没有在训练集中呈现过。留出法与穿插验证法都是应用 分层采样 的形式进行数据采样与划分,而自助法令是应用 有放回反复采样 的形式进行数据采样
数据集划分总结
- 对于数据量短缺的时候,通常采纳 留出法 或者 k 折穿插验证法 来进行训练 / 测试集的划分;
- 对于数据集小且难以无效划分训练 / 测试集时应用 自助法;
- 对于数据集小且可无效划分的时候最好应用 留一法 来进行划分,因为这种办法最为精确
4.1.5 模型评估规范
对于本次较量,咱们选用 auc 作为模型评估规范,相似的评估规范还有 ks、f1-score 等,具体介绍与实现大家能够回顾下 task1 中的内容。
一起来看一下 auc 到底是什么?
在逻辑回归外面,对于正负例的界定,通常会设一个阈值,大于阈值的为正类,小于阈值为负类。如果咱们减小这个阀值,更多的样本会被辨认为正类,进步正类的识别率,但同时也会使得更多的负类被谬误辨认为正类。为了直观示意这一景象,引入 ROC。
依据分类后果计算失去 ROC 空间中相应的点,连贯这些点就造成 ROC curve,横坐标为 False Positive Rate(FPR:假正率),纵坐标为 True Positive Rate(TPR:真正率)。个别状况下,这个曲线都应该处于 (0,0) 和(1,1)连线的上方, 如图:
ROC 曲线中的四个点:
- 点(0,1):即 FPR=0, TPR=1,意味着 FN=0 且 FP=0,将所有的样本都正确分类;
- 点(1,0):即 FPR=1,TPR=0,最差分类器,避开了所有正确答案;
- 点(0,0):即 FPR=TPR=0,FP=TP=0,分类器把每个实例都预测为负类;
- 点(1,1):分类器把每个实例都预测为正类
总之:ROC 曲线越靠近左上角,该分类器的性能越好,其泛化性能就越好。而且一般来说,如果 ROC 是润滑的,那么根本能够判断没有太大的 overfitting。
然而对于两个模型,咱们如何判断哪个模型的泛化性能更优呢?这里咱们有次要以下两种办法:
如果模型 A 的 ROC 曲线齐全包住了模型 B 的 ROC 曲线,那么咱们就认为模型 A 要优于模型 B;
如果两条曲线有穿插的话,咱们就通过比拟 ROC 与 X,Y 轴所围得曲线的面积来判断,面积越大,模型的性能就越优,这个面积咱们称之为 AUC(area under ROC curve)
4.2 代码实战
import pandas as pd
import numpy as np
import warnings
import os
import seaborn as sns
import matplotlib.pyplot as plt
"""
sns 相干设置
@return:
"""
# 申明应用 Seaborn 款式
sns.set()
# 有五种 seaborn 的绘图格调,它们别离是:darkgrid, whitegrid, dark, white, ticks。默认的主题是 darkgrid。sns.set_style("whitegrid")
# 有四个预置的环境,按大小从小到大排列别离为:paper, notebook, talk, poster。其中,notebook 是默认的。sns.set_context('talk')
# 中文字体设置 - 黑体
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决保留图像是负号 '-' 显示为方块的问题
plt.rcParams['axes.unicode_minus'] = False
# 解决 Seaborn 中文显示问题并调整字体大小
sns.set(font='SimHei')
reduce_mem_usage 函数通过调整数据类型,帮忙咱们缩小数据在内存中占用的空间
def reduce_mem_usage(df):
start_mem = df.memory_usage().sum()
print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
for col in df.columns:
col_type = df[col].dtype
if col_type != object:
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == 'int':
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
else:
df[col] = df[col].astype('category')
end_mem = df.memory_usage().sum()
print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
return df
# 读取数据
data = pd.read_csv('dataset/data_for_model.csv')
data = reduce_mem_usage(data)
Memory usage of dataframe is 928000128.00 MB
Memory usage after optimization is: 165006456.00 MB
Decreased by 82.2%
4.2.1 简略建模
Tips1:金融风控的理论我的项目多波及到信用评分,因而须要模型特色具备较好的可解释性,所以目前在理论我的项目中多还是以逻辑回归作为根底模型。然而在较量中以得分高下为准,不须要谨严的可解释性,所以大多基于集成算法进行建模。
Tips2:因为逻辑回归的算法个性,须要提前对异样值、缺失值数据进行解决【参考 task3 局部】
Tips3:基于树模型的算法个性,异样值、缺失值解决能够跳过,然而对于业务较为理解的同学也能够本人对缺失异样值进行解决,成果可能会更优于模型解决的后果。
注:以下建模的源数据参考 baseline 进行了相应的特色工程,对于异样缺失值未进行相应的解决操作。
建模之前的预操作
from sklearn.model_selection import KFold
# 拆散数据集,不便进行穿插验证
X_train = data.loc[data['sample']=='train', :].drop(['id','issueDate','isDefault', 'sample'], axis=1)
X_test = data.loc[data['sample']=='test', :].drop(['id','issueDate','isDefault', 'sample'], axis=1)
y_train = data.loc[data['sample']=='train', 'isDefault']
# 5 折穿插验证
folds = 5
seed = 2020
kf = KFold(n_splits=folds, shuffle=True, random_state=seed)
应用 Lightgbm 进行建模
"""对训练集数据进行划分,分成训练集和验证集,并进行相应的操作"""
from sklearn.model_selection import train_test_split
import lightgbm as lgb
# 数据集划分
X_train_split, X_val, y_train_split, y_val = train_test_split(X_train, y_train, test_size=0.2)
train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
valid_matrix = lgb.Dataset(X_val, label=y_val)
params = {
'boosting_type': 'gbdt',
'objective': 'binary',
'learning_rate': 0.1,
'metric': 'auc',
'min_child_weight': 1e-3,
'num_leaves': 31,
'max_depth': -1,
'reg_lambda': 0,
'reg_alpha': 0,
'feature_fraction': 1,
'bagging_fraction': 1,
'bagging_freq': 0,
'seed': 2020,
'nthread': 8,
'silent': True,
'verbose': -1,
}
"""应用训练集数据进行模型训练"""
model = lgb.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=20000, verbose_eval=1000, early_stopping_rounds=200)
Training until validation scores don't improve for 200 rounds
Early stopping, best iteration is:
[427] valid_0's auc: 0.724947
对验证集进行预测
from sklearn import metrics
from sklearn.metrics import roc_auc_score
"""预测并计算 roc 的相干指标"""
val_pre_lgb = model.predict(X_val, num_iteration=model.best_iteration)
fpr, tpr, threshold = metrics.roc_curve(y_val, val_pre_lgb)
roc_auc = metrics.auc(fpr, tpr)
print('未调参前 lightgbm 单模型在验证集上的 AUC:{}'.format(roc_auc))
"""画出 roc 曲线图"""
plt.figure(figsize=(8, 8))
plt.title('Validation ROC')
plt.plot(fpr, tpr, 'b', label = 'Val AUC = %0.4f' % roc_auc)
plt.ylim(0,1)
plt.xlim(0,1)
plt.legend(loc='best')
plt.title('ROC')
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
# 画出对角线
plt.plot([0,1],[0,1],'r--')
plt.show()
未调参前 lightgbm 单模型在验证集上的 AUC:0.7249469360631181
更进一步的,应用 5 折穿插验证进行模型性能评估
import lightgbm as lgb
"""应用 lightgbm 5 折穿插验证进行建模预测"""
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(X_train, y_train)):
print('************************************ {} ************************************'.format(str(i+1)))
X_train_split, y_train_split, X_val, y_val = X_train.iloc[train_index], y_train[train_index], X_train.iloc[valid_index], y_train[valid_index]
train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
valid_matrix = lgb.Dataset(X_val, label=y_val)
params = {
'boosting_type': 'gbdt',
'objective': 'binary',
'learning_rate': 0.1,
'metric': 'auc',
'min_child_weight': 1e-3,
'num_leaves': 31,
'max_depth': -1,
'reg_lambda': 0,
'reg_alpha': 0,
'feature_fraction': 1,
'bagging_fraction': 1,
'bagging_freq': 0,
'seed': 2020,
'nthread': 8,
'silent': True,
'verbose': -1,
}
model = lgb.train(params, train_set=train_matrix, num_boost_round=20000, valid_sets=valid_matrix, verbose_eval=1000, early_stopping_rounds=200)
val_pred = model.predict(X_val, num_iteration=model.best_iteration)
cv_scores.append(roc_auc_score(y_val, val_pred))
print(cv_scores)
print("lgb_scotrainre_list:{}".format(cv_scores))
print("lgb_score_mean:{}".format(np.mean(cv_scores)))
print("lgb_score_std:{}".format(np.std(cv_scores)))
...
lgb_scotrainre_list:[0.7303837315833632, 0.7258692125145638, 0.7305149209921737, 0.7296117869375041, 0.7294438695369077]
lgb_score_mean:0.7291647043129024
lgb_score_std:0.0016998349834934656
4.2.2 模型调参(贪婪、网格搜寻、贝叶斯)
贪婪调参
先应用以后对模型影响最大的参数进行调优,达到以后参数下的模型最优化,再应用对模型影响次之的参数进行调优,如此上来,直到所有的参数调整结束。
这个办法的毛病就是可能会调到部分最优而不是全局最优,然而只须要一步一步的进行参数最优化调试即可,容易了解。
须要留神的是在树模型中参数调整的程序,也就是各个参数对模型的影响水平,这里列举一下日常调参过程中罕用的参数和调参程序:
- ①:max_depth、num_leaves
- ②:min_data_in_leaf、min_child_weight
- ③:bagging_fraction、feature_fraction、bagging_freq
- ④:reg_lambda、reg_alpha
- ⑤:min_split_gain
from sklearn.model_selection import cross_val_score
# 调 objective
best_obj = dict()
for obj in objective:
model = LGBMRegressor(objective=obj)
"""预测并计算 roc 的相干指标"""
score = cross_val_score(model, X_train, y_train, cv=5, scoring='roc_auc').mean()
best_obj[obj] = score
# num_leaves
best_leaves = dict()
for leaves in num_leaves:
model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=leaves)
"""预测并计算 roc 的相干指标"""
score = cross_val_score(model, X_train, y_train, cv=5, scoring='roc_auc').mean()
best_leaves[leaves] = score
# max_depth
best_depth = dict()
for depth in max_depth:
model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0],
num_leaves=min(best_leaves.items(), key=lambda x:x[1])[0],
max_depth=depth)
"""预测并计算 roc 的相干指标"""
score = cross_val_score(model, X_train, y_train, cv=5, scoring='roc_auc').mean()
best_depth[depth] = score
"""可顺次将模型的参数通过下面的形式进行调整优化,并且通过可视化察看在每一个最优参数下模型的得分状况"""
可顺次将模型的参数通过下面的形式进行调整优化,并且通过可视化察看在每一个最优参数下模型的得分状况
网格搜寻
sklearn 提供 GridSearchCV 用于进行网格搜寻,只须要把模型的参数输进去,就能给出最优化的后果和参数。相比起贪婪调参,网格搜寻的后果会更优,然而网格搜寻只适宜于小数据集,一旦数据的量级下来了,很难得出后果。
同样以 Lightgbm 算法为例,进行网格搜寻调参:
"""通过网格搜寻确定最优参数"""
from sklearn.model_selection import GridSearchCV
def get_best_cv_params(learning_rate=0.1, n_estimators=581, num_leaves=31, max_depth=-1, bagging_fraction=1.0,
feature_fraction=1.0, bagging_freq=0, min_data_in_leaf=20, min_child_weight=0.001,
min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=None):
# 设置 5 折穿插验证
cv_fold = StratifiedKFold(n_splits=5, random_state=0, shuffle=True,)
model_lgb = lgb.LGBMClassifier(learning_rate=learning_rate,
n_estimators=n_estimators,
num_leaves=num_leaves,
max_depth=max_depth,
bagging_fraction=bagging_fraction,
feature_fraction=feature_fraction,
bagging_freq=bagging_freq,
min_data_in_leaf=min_data_in_leaf,
min_child_weight=min_child_weight,
min_split_gain=min_split_gain,
reg_lambda=reg_lambda,
reg_alpha=reg_alpha,
n_jobs= 8
)
grid_search = GridSearchCV(estimator=model_lgb,
cv=cv_fold,
param_grid=param_grid,
scoring='roc_auc'
)
grid_search.fit(X_train, y_train)
print('模型以后最优参数为:{}'.format(grid_search.best_params_))
print('模型以后最优得分为:{}'.format(grid_search.best_score_))
"""以下代码未运行,耗时较长,请审慎运行,且每一步的最优参数须要在下一步进行手动更新,请留神"""
"""
须要留神一下的是,除了获取下面的获取 num_boost_round 时候用的是原生的 lightgbm(因为要用自带的 cv)上面配合 GridSearchCV 时必须应用 sklearn 接口的 lightgbm。"""""" 设置 n_estimators 为 581,调整 num_leaves 和 max_depth,这里抉择先粗调再细调 """lgb_params = {'num_leaves': range(10, 80, 5),'max_depth': range(3,10,2)}
get_best_cv_params(learning_rate=0.1, n_estimators=581, num_leaves=None, max_depth=None, min_data_in_leaf=20,
min_child_weight=0.001,bagging_fraction=1.0, feature_fraction=1.0, bagging_freq=0,
min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=lgb_params)
"""num_leaves 为 30,max_depth 为 7,进一步细调 num_leaves 和 max_depth"""
lgb_params = {'num_leaves': range(25, 35, 1), 'max_depth': range(5,9,1)}
get_best_cv_params(learning_rate=0.1, n_estimators=85, num_leaves=None, max_depth=None, min_data_in_leaf=20,
min_child_weight=0.001,bagging_fraction=1.0, feature_fraction=1.0, bagging_freq=0,
min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=lgb_params)
"""确定 min_data_in_leaf 为 45,min_child_weight 为 0.001,上面进行 bagging_fraction、feature_fraction 和 bagging_freq 的调参"""
lgb_params = {'bagging_fraction': [i/10 for i in range(5,10,1)],
'feature_fraction': [i/10 for i in range(5,10,1)],
'bagging_freq': range(0,81,10)
}
get_best_cv_params(learning_rate=0.1, n_estimators=85, num_leaves=29, max_depth=7, min_data_in_leaf=45,
min_child_weight=0.001,bagging_fraction=None, feature_fraction=None, bagging_freq=None,
min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=lgb_params)
"""确定 bagging_fraction 为 0.4、feature_fraction 为 0.6、bagging_freq 为,上面进行 reg_lambda、reg_alpha 的调参"""
lgb_params = {'reg_lambda': [0,0.001,0.01,0.03,0.08,0.3,0.5], 'reg_alpha': [0,0.001,0.01,0.03,0.08,0.3,0.5]}
get_best_cv_params(learning_rate=0.1, n_estimators=85, num_leaves=29, max_depth=7, min_data_in_leaf=45,
min_child_weight=0.001,bagging_fraction=0.9, feature_fraction=0.9, bagging_freq=40,
min_split_gain=0, reg_lambda=None, reg_alpha=None, param_grid=lgb_params)
"""确定 reg_lambda、reg_alpha 都为 0,上面进行 min_split_gain 的调参"""
lgb_params = {'min_split_gain': [i/10 for i in range(0,11,1)]}
get_best_cv_params(learning_rate=0.1, n_estimators=85, num_leaves=29, max_depth=7, min_data_in_leaf=45,
min_child_weight=0.001,bagging_fraction=0.9, feature_fraction=0.9, bagging_freq=40,
min_split_gain=None, reg_lambda=0, reg_alpha=0, param_grid=lgb_params)
"""参数确定好了当前,咱们设置一个比拟小的 learning_rate 0.005,来确定最终的 num_boost_round"""
# 设置 5 折穿插验证
# cv_fold = StratifiedKFold(n_splits=5, random_state=0, shuffle=True,)
final_params = {
'boosting_type': 'gbdt',
'learning_rate': 0.01,
'num_leaves': 29,
'max_depth': 7,
'min_data_in_leaf':45,
'min_child_weight':0.001,
'bagging_fraction': 0.9,
'feature_fraction': 0.9,
'bagging_freq': 40,
'min_split_gain': 0,
'reg_lambda':0,
'reg_alpha':0,
'nthread': 6
}
cv_result = lgb.cv(train_set=lgb_train,
early_stopping_rounds=20,
num_boost_round=5000,
nfold=5,
stratified=True,
shuffle=True,
params=final_params,
metrics='auc',
seed=0,
)
print('迭代次数{}'.format(len(cv_result['auc-mean'])))
print('穿插验证的 AUC 为{}'.format(max(cv_result['auc-mean'])))
在理论调整过程中,可先设置一个较大的学习率(下面的例子中 0.1),通过 Lgb 原生的 cv 函数进行树个数的确定,之后再通过下面的实例代码进行参数的调整优化。
最初针对最优的参数设置一个较小的学习率(例如 0.05),同样通过 cv 函数确定树的个数,确定最终的参数。
须要留神的是,针对大数据集,下面每一层参数的调整都须要消耗较长时间,
贝叶斯调参
在应用之前须要先安装包 bayesian-optimization,运行如下命令即可:
pip install bayesian-optimization
贝叶斯调参的次要思维是:给定优化的指标函数(狭义的函数,只需指定输出和输入即可,无需晓得内部结构以及数学性质),通过一直地增加样本点来更新指标函数的后验散布(高斯过程, 直到后验散布根本贴合于实在散布)。简略的说,就是思考了上一次参数的信息,从而更好的调整以后的参数。
贝叶斯调参的步骤如下:
- 定义优化函数(rf_cv)
- 建设模型
- 定义待优化的参数
- 失去优化后果,并返回要优化的分数指标
from sklearn.model_selection import cross_val_score
"""定义优化函数"""
def rf_cv_lgb(num_leaves, max_depth, bagging_fraction, feature_fraction, bagging_freq, min_data_in_leaf,
min_child_weight, min_split_gain, reg_lambda, reg_alpha):
# 建设模型
model_lgb = lgb.LGBMClassifier(boosting_type='gbdt', bjective='binary', metric='auc',
learning_rate=0.1, n_estimators=5000,
num_leaves=int(num_leaves), max_depth=int(max_depth),
bagging_fraction=round(bagging_fraction, 2), feature_fraction=round(feature_fraction, 2),
bagging_freq=int(bagging_freq), min_data_in_leaf=int(min_data_in_leaf),
min_child_weight=min_child_weight, min_split_gain=min_split_gain,
reg_lambda=reg_lambda, reg_alpha=reg_alpha,
n_jobs= 8
)
val = cross_val_score(model_lgb, X_train_split, y_train_split, cv=5, scoring='roc_auc').mean()
return val
from bayes_opt import BayesianOptimization
"""定义优化参数"""
bayes_lgb = BayesianOptimization(
rf_cv_lgb,
{'num_leaves':(10, 200),
'max_depth':(3, 20),
'bagging_fraction':(0.5, 1.0),
'feature_fraction':(0.5, 1.0),
'bagging_freq':(0, 100),
'min_data_in_leaf':(10,100),
'min_child_weight':(0, 10),
'min_split_gain':(0.0, 1.0),
'reg_alpha':(0.0, 10),
'reg_lambda':(0.0, 10),
}
)
"""开始优化"""
bayes_lgb.maximize(n_iter=10)
| iter | target | baggin... | baggin... | featur... | max_depth | min_ch... | min_da... | min_sp... | num_le... | reg_alpha | reg_la... |
-------------------------------------------------------------------------------------------------------------------------------------------------
| [0m 1 [0m | [0m 0.7263 [0m | [0m 0.7196 [0m | [0m 80.73 [0m | [0m 0.7988 [0m | [0m 19.17 [0m | [0m 5.751 [0m | [0m 40.71 [0m | [0m 0.9548 [0m | [0m 176.2 [0m | [0m 2.939 [0m | [0m 7.212 [0m |
| [95m 2 [0m | [95m 0.7279 [0m | [95m 0.8997 [0m | [95m 74.72 [0m | [95m 0.5904 [0m | [95m 7.259 [0m | [95m 6.175 [0m | [95m 92.03 [0m | [95m 0.4027 [0m | [95m 51.65 [0m | [95m 6.404 [0m | [95m 4.781 [0m |
| [0m 3 [0m | [0m 0.7207 [0m | [0m 0.5133 [0m | [0m 16.53 [0m | [0m 0.9536 [0m | [0m 4.974 [0m | [0m 2.37 [0m | [0m 98.08 [0m | [0m 0.7909 [0m | [0m 52.12 [0m | [0m 4.443 [0m | [0m 4.429 [0m |
| [0m 4 [0m | [0m 0.7276 [0m | [0m 0.6265 [0m | [0m 53.12 [0m | [0m 0.7307 [0m | [0m 10.67 [0m | [0m 1.824 [0m | [0m 18.98 [0m | [0m 0.954 [0m | [0m 60.47 [0m | [0m 6.963 [0m | [0m 1.999 [0m |
| [0m 5 [0m | [0m 0.6963 [0m | [0m 0.6509 [0m | [0m 11.58 [0m | [0m 0.5386 [0m | [0m 11.21 [0m | [0m 7.85 [0m | [0m 11.4 [0m | [0m 0.4269 [0m | [0m 153.0 [0m | [0m 0.5227 [0m | [0m 2.257 [0m |
| [0m 6 [0m | [0m 0.7276 [0m | [0m 0.6241 [0m | [0m 49.76 [0m | [0m 0.6057 [0m | [0m 10.34 [0m | [0m 1.718 [0m | [0m 22.43 [0m | [0m 0.8294 [0m | [0m 55.68 [0m | [0m 6.759 [0m | [0m 2.6 [0m |
| [95m 7 [0m | [95m 0.7283 [0m | [95m 0.9815 [0m | [95m 96.15 [0m | [95m 0.6961 [0m | [95m 19.45 [0m | [95m 1.627 [0m | [95m 37.7 [0m | [95m 0.4185 [0m | [95m 14.22 [0m | [95m 7.057 [0m | [95m 9.924 [0m |
| [0m 8 [0m | [0m 0.7278 [0m | [0m 0.7139 [0m | [0m 96.83 [0m | [0m 0.5063 [0m | [0m 3.941 [0m | [0m 1.469 [0m | [0m 97.28 [0m | [0m 0.07553 [0m | [0m 196.9 [0m | [0m 7.988 [0m | [0m 2.159 [0m |
| [0m 9 [0m | [0m 0.7195 [0m | [0m 0.5352 [0m | [0m 98.72 [0m | [0m 0.9699 [0m | [0m 4.445 [0m | [0m 1.767 [0m | [0m 13.91 [0m | [0m 0.1647 [0m | [0m 191.5 [0m | [0m 4.003 [0m | [0m 2.027 [0m |
| [0m 10 [0m | [0m 0.7281 [0m | [0m 0.7281 [0m | [0m 73.63 [0m | [0m 0.5598 [0m | [0m 19.29 [0m | [0m 0.5344 [0m | [0m 99.66 [0m | [0m 0.933 [0m | [0m 101.4 [0m | [0m 8.836 [0m | [0m 0.9222 [0m |
| [0m 11 [0m | [0m 0.7279 [0m | [0m 0.8213 [0m | [0m 0.05856 [0m | [0m 0.7626 [0m | [0m 17.49 [0m | [0m 8.447 [0m | [0m 10.71 [0m | [0m 0.3252 [0m | [0m 13.64 [0m | [0m 9.319 [0m | [0m 0.4747 [0m |
| [0m 12 [0m | [0m 0.7281 [0m | [0m 0.8372 [0m | [0m 95.71 [0m | [0m 0.9598 [0m | [0m 10.32 [0m | [0m 8.394 [0m | [0m 15.23 [0m | [0m 0.4909 [0m | [0m 94.48 [0m | [0m 9.486 [0m | [0m 9.044 [0m |
| [0m 13 [0m | [0m 0.6993 [0m | [0m 0.5183 [0m | [0m 99.02 [0m | [0m 0.542 [0m | [0m 15.5 [0m | [0m 8.35 [0m | [0m 38.15 [0m | [0m 0.4079 [0m | [0m 58.01 [0m | [0m 0.2668 [0m | [0m 1.652 [0m |
| [0m 14 [0m | [0m 0.7267 [0m | [0m 0.7933 [0m | [0m 4.459 [0m | [0m 0.79 [0m | [0m 7.557 [0m | [0m 2.43 [0m | [0m 27.91 [0m | [0m 0.8725 [0m | [0m 28.32 [0m | [0m 9.967 [0m | [0m 9.885 [0m |
| [0m 15 [0m | [0m 0.6979 [0m | [0m 0.9419 [0m | [0m 1.22 [0m | [0m 0.835 [0m | [0m 11.56 [0m | [0m 9.962 [0m | [0m 93.79 [0m | [0m 0.018 [0m | [0m 197.6 [0m | [0m 9.711 [0m | [0m 3.78 [0m |
=================================================================================================================================================
"""显示优化后果"""
bayes_lgb.max
{'target': 0.7282530196283977,
'params': {'bagging_fraction': 0.9815471914843896,
'bagging_freq': 96.14757648686668,
'feature_fraction': 0.6961281791730929,
'max_depth': 19.45450235568963,
'min_child_weight': 1.6266132496156782,
'min_data_in_leaf': 37.697878831472295,
'min_split_gain': 0.4184947943942168,
'num_leaves': 14.221122487200399,
'reg_alpha': 7.056502173310882,
'reg_lambda': 9.924023764203156}}
参数优化实现后,咱们能够依据优化后的参数建设新的模型,升高学习率并寻找最优模型迭代次数
"""调整一个较小的学习率,并通过 cv 函数确定以后最优的迭代次数"""
base_params_lgb = {
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': 'auc',
'learning_rate': 0.01,
'num_leaves': 14,
'max_depth': 19,
'min_data_in_leaf': 37,
'min_child_weight':1.6,
'bagging_fraction': 0.98,
'feature_fraction': 0.69,
'bagging_freq': 96,
'reg_lambda': 9,
'reg_alpha': 7,
'min_split_gain': 0.4,
'nthread': 8,
'seed': 2020,
'silent': True,
'verbose': -1,
}
cv_result_lgb = lgb.cv(
train_set=train_matrix,
early_stopping_rounds=1000,
num_boost_round=20000,
nfold=5,
stratified=True,
shuffle=True,
params=base_params_lgb,
metrics='auc',
seed=0
)
print('迭代次数{}'.format(len(cv_result_lgb['auc-mean'])))
print('最终模型的 AUC 为{}'.format(max(cv_result_lgb['auc-mean'])))
迭代次数 14269
最终模型的 AUC 为 0.7315032037635779
模型参数曾经确定,建设最终模型并对验证集进行验证
import lightgbm as lgb
"""应用 lightgbm 5 折穿插验证进行建模预测"""
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(X_train, y_train)):
print('************************************ {} ************************************'.format(str(i+1)))
X_train_split, y_train_split, X_val, y_val = X_train.iloc[train_index], y_train[train_index], X_train.iloc[valid_index], y_train[valid_index]
train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
valid_matrix = lgb.Dataset(X_val, label=y_val)
params = {
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': 'auc',
'learning_rate': 0.01,
'num_leaves': 14,
'max_depth': 19,
'min_data_in_leaf': 37,
'min_child_weight':1.6,
'bagging_fraction': 0.98,
'feature_fraction': 0.69,
'bagging_freq': 96,
'reg_lambda': 9,
'reg_alpha': 7,
'min_split_gain': 0.4,
'nthread': 8,
'seed': 2020,
'silent': True,
}
model = lgb.train(params, train_set=train_matrix, num_boost_round=14269, valid_sets=valid_matrix, verbose_eval=1000, early_stopping_rounds=200)
val_pred = model.predict(X_val, num_iteration=model.best_iteration)
cv_scores.append(roc_auc_score(y_val, val_pred))
print(cv_scores)
print("lgb_scotrainre_list:{}".format(cv_scores))
print("lgb_score_mean:{}".format(np.mean(cv_scores)))
print("lgb_score_std:{}".format(np.std(cv_scores)))
...
lgb_scotrainre_list:[0.7329726464187137, 0.7294292852806246, 0.7341505801564857, 0.7328331383185244, 0.7317405262608612]
lgb_score_mean:0.732225235287042
lgb_score_std:0.0015929470575114753
通过 5 折穿插验证能够发现,模型迭代次数在 13000 次的时候会停之,那么咱们在建设新模型时间接设置最大迭代次数,并应用验证集进行模型预测
""""""base_params_lgb = {'boosting_type':'gbdt','objective':'binary','metric':'auc','learning_rate': 0.01,'num_leaves': 14,'max_depth': 19,'min_data_in_leaf': 37,'min_child_weight':1.6,'bagging_fraction': 0.98,'feature_fraction': 0.69,'bagging_freq': 96,'reg_lambda': 9,'reg_alpha': 7,'min_split_gain': 0.4,'nthread': 8,'seed': 2020,'silent': True,}
"""应用训练集数据进行模型训练"""
final_model_lgb = lgb.train(base_params_lgb, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=13000, verbose_eval=1000, early_stopping_rounds=200)
"""预测并计算 roc 的相干指标"""
val_pre_lgb = final_model_lgb.predict(X_val)
fpr, tpr, threshold = metrics.roc_curve(y_val, val_pre_lgb)
roc_auc = metrics.auc(fpr, tpr)
print('调参后 lightgbm 单模型在验证集上的 AUC:{}'.format(roc_auc))
"""画出 roc 曲线图"""
plt.figure(figsize=(8, 8))
plt.title('Validation ROC')
plt.plot(fpr, tpr, 'b', label = 'Val AUC = %0.4f' % roc_auc)
plt.ylim(0,1)
plt.xlim(0,1)
plt.legend(loc='best')
plt.title('ROC')
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
# 画出对角线
plt.plot([0,1],[0,1],'r--')
plt.show()
Training until validation scores don't improve for 200 rounds
[1000] valid_0's auc: 0.723676
[2000] valid_0's auc: 0.727282
[3000] valid_0's auc: 0.728593
[4000] valid_0's auc: 0.729493
[5000] valid_0's auc: 0.730087
[6000] valid_0's auc: 0.730515
[7000] valid_0's auc: 0.730872
[8000] valid_0's auc: 0.731121
[9000] valid_0's auc: 0.731351
[10000] valid_0's auc: 0.731502
[11000] valid_0's auc: 0.731707
Early stopping, best iteration is:
[11192] valid_0's auc: 0.731741
调参后 lightgbm 单模型在验证集上的 AUC:0.7317405262608612
能够看到相比最早的原始参数,模型的性能还是有晋升的
"""保留模型到本地"""
# 保留模型
import pickle
pickle.dump(final_model_lgb, open('dataset/model_lgb_best.pkl', 'wb'))
4.3 模型调参小总结 **
- 集成模型内置的 cv 函数能够较快的进行繁多参数的调节,个别能够用来优先确定树模型的迭代次数
- 数据量较大的时候(例如本次我的项目的数据),网格搜寻调参会特地特地慢,不倡议尝试
-
集成模型中原生库和 sklearn 下的库局部参数不统一,须要留神,具体能够参考 xgb 和 lgb 的官网 API
xgb 原生库 API,sklearn 库下 xgbAPI
lgb 原生库 API,sklearn 库下 lgbAPI
4.4 模型相干原理介绍
因为相干算法原理篇幅较长,本文举荐了一些博客与教材供初学者们进行学习。
4.4.1 逻辑回归模型
https://blog.csdn.net/han_xiaoyang/article/details/49123419
4.4.2 决策树模型
https://blog.csdn.net/c406495762/article/details/76262487
4.4.3 GBDT 模型
https://zhuanlan.zhihu.com/p/45145899
4.4.4 XGBoost 模型
https://blog.csdn.net/wuzhongqiang/article/details/104854890
4.4.5 LightGBM 模型
https://blog.csdn.net/wuzhongqiang/article/details/105350579
4.4.6 Catboost 模型
https://mp.weixin.qq.com/s/xloTLr5NJBgBspMQtxPoFA
4.4.7 工夫序列模型(选学)
RNN:https://zhuanlan.zhihu.com/p/45289691
LSTM:https://zhuanlan.zhihu.com/p/83496936
5. 模型交融
5.1 stacking\blending 详解
- stacking
将若干基学习器取得的预测后果,将预测后果作为新的训练集来训练一个学习器。如下图 假如有五个基学习器,将数据带入五基学习器中失去预测后果,再带入模型六中进行训练预测。然而因为间接由五个基学习器取得后果间接带入模型六中,容易导致过拟合。所以在应用五个及模型进行预测的时候,能够思考应用 K 折验证,避免过拟合。
- blending
与 stacking 不同,blending 是将预测的值作为新的特色和原特色合并,形成新的特征值,用于预测。为了避免过拟合,将数据分为两局部 d1、d2,应用 d1 的数据作为训练集,d2 数据作为测试集。预测失去的数据作为新特色应用 d2 的数据作为训练集联合新特色,预测测试集后果。
-
Blending 与 stacking 的不同
-
stacking
- stacking 中因为两层应用的数据不同,所以能够防止信息泄露的问题。
- 在组队比赛的过程中,不须要给队友分享本人的随机种子。
-
Blending
- 因为 blending 对将数据划分为两个局部,在最初预测时有局部数据信息将被疏忽。
- 同时在应用第二层数据时可能会因为第二层数据较少产生过拟合景象。
-
参考资料:还是没有了解透彻吗?能够查看参考资料进一步理解哦!
https://blog.csdn.net/wuzhongqiang/article/details/105012739
5.1.1 均匀:
- 简略加权均匀,后果间接交融
求多个预测后果的平均值。pre1-pren 别离是 n 组模型预测进去的后果,将其进行加权融
pre = (pre1 + pre2 + pre3 +...+pren)/n
- 加权平均法
个别依据之前预测模型的准确率,进行加权交融,将准确性高的模型赋予更高的权重。
pre = 0.3pre1 + 0.3pre2 + 0.4pre3
5.1.2 投票
- 简略投票
from xgboost import XGBClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
clf1 = LogisticRegression(random_state=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=4, min_child_weight=2, subsample=0.7,objective='binary:logistic')
vclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('xgb', clf3)])
vclf = vclf .fit(x_train,y_train)
print(vclf .predict(x_test))
- 加权投票
在 VotingClassifier 中退出参数 voting='soft', weights=[2, 1, 1],weights 用于调节基模型的权重
from xgboost import XGBClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
clf1 = LogisticRegression(random_state=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=4, min_child_weight=2, subsample=0.7,objective='binary:logistic')
vclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('xgb', clf3)], voting='soft', weights=[2, 1, 1])
vclf = vclf .fit(x_train,y_train)
print(vclf .predict(x_test))
5.1.3 Stacking:
import warnings
warnings.filterwarnings('ignore')
import itertools
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from mlxtend.classifier import StackingClassifier
from sklearn.model_selection import cross_val_score, train_test_split
from mlxtend.plotting import plot_learning_curves
from mlxtend.plotting import plot_decision_regions
# 以 python 自带的鸢尾花数据集为例
iris = datasets.load_iris()
X, y = iris.data[:, 1:3], iris.target
clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = GaussianNB()
lr = LogisticRegression()
sclf = StackingClassifier(classifiers=[clf1, clf2, clf3],
meta_classifier=lr)
label = ['KNN', 'Random Forest', 'Naive Bayes', 'Stacking Classifier']
clf_list = [clf1, clf2, clf3, sclf]
fig = plt.figure(figsize=(10,8))
gs = gridspec.GridSpec(2, 2)
grid = itertools.product([0,1],repeat=2)
clf_cv_mean = []
clf_cv_std = []
for clf, label, grd in zip(clf_list, label, grid):
scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy')
print("Accuracy: %.2f (+/- %.2f) [%s]" %(scores.mean(), scores.std(), label))
clf_cv_mean.append(scores.mean())
clf_cv_std.append(scores.std())
clf.fit(X, y)
ax = plt.subplot(gs[grd[0], grd[1]])
fig = plot_decision_regions(X=X, y=y, clf=clf)
plt.title(label)
plt.show()
Accuracy: 0.91 (+/- 0.07) [KNN]
Accuracy: 0.94 (+/- 0.04) [Random Forest]
Accuracy: 0.91 (+/- 0.04) [Naive Bayes]
Accuracy: 0.94 (+/- 0.04) [Stacking Classifier]
5.1.2 blending
# 以 python 自带的鸢尾花数据集为例
data_0 = iris.data
data = data_0[:100,:]
target_0 = iris.target
target = target_0[:100]
#模型交融中基学习器
clfs = [LogisticRegression(),
RandomForestClassifier(),
ExtraTreesClassifier(),
GradientBoostingClassifier()]
#切分一部分数据作为测试集
X, X_predict, y, y_predict = train_test_split(data, target, test_size=0.3, random_state=914)
#切分训练数据集为 d1,d2 两局部
X_d1, X_d2, y_d1, y_d2 = train_test_split(X, y, test_size=0.5, random_state=914)
dataset_d1 = np.zeros((X_d2.shape[0], len(clfs)))
dataset_d2 = np.zeros((X_predict.shape[0], len(clfs)))
for j, clf in enumerate(clfs):
#顺次训练各个单模型
clf.fit(X_d1, y_d1)
y_submission = clf.predict_proba(X_d2)[:, 1]
dataset_d1[:, j] = y_submission
#对于测试集,间接用这 k 个模型的预测值作为新的特色。dataset_d2[:, j] = clf.predict_proba(X_predict)[:, 1]
print("val auc Score: %f" % roc_auc_score(y_predict, dataset_d2[:, j]))
#交融应用的模型
clf = GradientBoostingClassifier()
clf.fit(dataset_d1, y_d2)
y_submission = clf.predict_proba(dataset_d2)[:, 1]
print("Val auc Score of Blending: %f" % (roc_auc_score(y_predict, y_submission)))
5.2 小结总结
- 简略均匀和加权均匀是罕用的两种较量中模型交融的形式。其长处是疾速、简略。
- stacking 在泛滥较量中大杀四方,然而跑过代码的小伙伴想必能感触到速度之慢,同时 stacking 多层晋升幅度并不能对消其带来的工夫和内存耗费,所以理论环境中利用还是有肯定的难度,同时在有问难环节的较量中,主办方也会肯定水平上思考模型的复杂程度,所以说并不是模型交融的层数越多越好的。
- 当然在较量中将加权均匀、stacking、blending 等混用也是一种策略,可能会播种意想不到的成果哦!
6. 残缺 baseline 代码
import pandas as pd
import os
import gc
import lightgbm as lgb
import xgboost as xgb
from catboost import CatBoostRegressor
from sklearn.linear_model import SGDRegressor, LinearRegression, Ridge
from sklearn.preprocessing import MinMaxScaler
import math
import numpy as np
from tqdm import tqdm
from sklearn.model_selection import StratifiedKFold, KFold
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, log_loss
import matplotlib.pyplot as plt
import time
import warnings
warnings.filterwarnings('ignore')
train = pd.read_csv('train.csv')
testA = pd.read_csv('testA.csv')
train.head()
data = pd.concat([train, testA], axis=0, ignore_index=True)
6.1 数据预处理
- 能够看到很多变量不能间接训练,比方 grade、subGrade、employmentLength、issueDate、earliesCreditLine,须要进行预处理
print(sorted(data['grade'].unique()))
print(sorted(data['subGrade'].unique()))
['A', 'B', 'C', 'D', 'E', 'F', 'G']
['A1', 'A2', 'A3', 'A4', 'A5', 'B1', 'B2', 'B3', 'B4', 'B5', 'C1', 'C2', 'C3', 'C4', 'C5', 'D1', 'D2', 'D3', 'D4', 'D5', 'E1', 'E2', 'E3', 'E4', 'E5', 'F1', 'F2', 'F3', 'F4', 'F5', 'G1', 'G2', 'G3', 'G4', 'G5']
data['employmentLength'].value_counts(dropna=False).sort_index()
1 year 65671
10+ years 328525
2 years 90565
3 years 80163
4 years 59818
5 years 62645
6 years 46582
7 years 44230
8 years 45168
9 years 37866
< 1 year 80226
NaN 58541
Name: employmentLength, dtype: int64
- 首先对 employmentLength 进行转换到数值
data['employmentLength'].replace(to_replace='10+ years', value='10 years', inplace=True)
data['employmentLength'].replace('< 1 year', '0 years', inplace=True)
def employmentLength_to_int(s):
if pd.isnull(s):
return s
else:
return np.int8(s.split()[0])
data['employmentLength'] = data['employmentLength'].apply(employmentLength_to_int)
data['employmentLength'].value_counts(dropna=False).sort_index()
0.0 80226
1.0 65671
2.0 90565
3.0 80163
4.0 59818
5.0 62645
6.0 46582
7.0 44230
8.0 45168
9.0 37866
10.0 328525
NaN 58541
Name: employmentLength, dtype: int64
- 对 earliesCreditLine 进行预处理
data['earliesCreditLine'].sample(5)
375743 Jun-2003
361340 Jul-1999
716602 Aug-1995
893559 Oct-1982
221525 Nov-2004
Name: earliesCreditLine, dtype: object
data['earliesCreditLine'] = data['earliesCreditLine'].apply(lambda s: int(s[-4:]))
data['earliesCreditLine'].describe()
count 1000000.000000
mean 1998.688632
std 7.606231
min 1944.000000
25% 1995.000000
50% 2000.000000
75% 2004.000000
max 2015.000000
Name: earliesCreditLine, dtype: float64
data.head()
- 类别特色解决
# 局部类别特色
cate_features = ['grade', 'subGrade', 'employmentTitle', 'homeOwnership', 'verificationStatus', 'purpose', 'postCode', 'regionCode', \
'applicationType', 'initialListStatus', 'title', 'policyCode']
for f in cate_features:
print(f, '类型数:', data[f].nunique())
grade 类型数:7
subGrade 类型数:35
employmentTitle 类型数:298101
homeOwnership 类型数:6
verificationStatus 类型数:3
purpose 类型数:14
postCode 类型数:935
regionCode 类型数:51
applicationType 类型数:2
initialListStatus 类型数:2
title 类型数:47903
policyCode 类型数:1
# 类型数在 2 之上,又不是高维稠密的
data = pd.get_dummies(data, columns=['grade', 'subGrade', 'homeOwnership', 'verificationStatus', 'purpose', 'regionCode'], drop_first=True)
# 高维类别特色须要进行转换
for f in ['employmentTitle', 'postCode', 'title']:
data[f+'_cnts'] = data.groupby([f])['id'].transform('count')
data[f+'_rank'] = data.groupby([f])['id'].rank(ascending=False).astype(int)
del data[f]
6.2 训练数据 / 测试数据筹备
features = [f for f in data.columns if f not in ['id','issueDate','isDefault']]
train = data[data.isDefault.notnull()].reset_index(drop=True)
test = data[data.isDefault.isnull()].reset_index(drop=True)
x_train = train[features]
x_test = test[features]
y_train = train['isDefault']
6.3 模型训练
- 间接构建了一个函数,能够调用三种树模型,方便快捷
def cv_model(clf, train_x, train_y, test_x, clf_name):
folds = 5
seed = 2020
kf = KFold(n_splits=folds, shuffle=True, random_state=seed)
train = np.zeros(train_x.shape[0])
test = np.zeros(test_x.shape[0])
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)):
print('************************************ {} ************************************'.format(str(i+1)))
trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index]
if clf_name == "lgb":
train_matrix = clf.Dataset(trn_x, label=trn_y)
valid_matrix = clf.Dataset(val_x, label=val_y)
params = {
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': 'auc',
'min_child_weight': 5,
'num_leaves': 2 ** 5,
'lambda_l2': 10,
'feature_fraction': 0.8,
'bagging_fraction': 0.8,
'bagging_freq': 4,
'learning_rate': 0.1,
'seed': 2020,
'nthread': 28,
'n_jobs':24,
'silent': True,
'verbose': -1,
}
model = clf.train(params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], verbose_eval=200,early_stopping_rounds=200)
val_pred = model.predict(val_x, num_iteration=model.best_iteration)
test_pred = model.predict(test_x, num_iteration=model.best_iteration)
# print(list(sorted(zip(features, model.feature_importance("gain")), key=lambda x: x[1], reverse=True))[:20])
if clf_name == "xgb":
train_matrix = clf.DMatrix(trn_x , label=trn_y)
valid_matrix = clf.DMatrix(val_x , label=val_y)
test_matrix = clf.DMatrix(test_x)
params = {'booster': 'gbtree',
'objective': 'binary:logistic',
'eval_metric': 'auc',
'gamma': 1,
'min_child_weight': 1.5,
'max_depth': 5,
'lambda': 10,
'subsample': 0.7,
'colsample_bytree': 0.7,
'colsample_bylevel': 0.7,
'eta': 0.04,
'tree_method': 'exact',
'seed': 2020,
'nthread': 36,
"silent": True,
}
watchlist = [(train_matrix, 'train'),(valid_matrix, 'eval')]
model = clf.train(params, train_matrix, num_boost_round=50000, evals=watchlist, verbose_eval=200, early_stopping_rounds=200)
val_pred = model.predict(valid_matrix, ntree_limit=model.best_ntree_limit)
test_pred = model.predict(test_matrix , ntree_limit=model.best_ntree_limit)
if clf_name == "cat":
params = {'learning_rate': 0.05, 'depth': 5, 'l2_leaf_reg': 10, 'bootstrap_type': 'Bernoulli',
'od_type': 'Iter', 'od_wait': 50, 'random_seed': 11, 'allow_writing_files': False}
model = clf(iterations=20000, **params)
model.fit(trn_x, trn_y, eval_set=(val_x, val_y),
cat_features=[], use_best_model=True, verbose=500)
val_pred = model.predict(val_x)
test_pred = model.predict(test_x)
train[valid_index] = val_pred
test = test_pred / kf.n_splits
cv_scores.append(roc_auc_score(val_y, val_pred))
print(cv_scores)
print("%s_scotrainre_list:" % clf_name, cv_scores)
print("%s_score_mean:" % clf_name, np.mean(cv_scores))
print("%s_score_std:" % clf_name, np.std(cv_scores))
return train, test
def lgb_model(x_train, y_train, x_test):
lgb_train, lgb_test = cv_model(lgb, x_train, y_train, x_test, "lgb")
return lgb_train, lgb_test
def xgb_model(x_train, y_train, x_test):
xgb_train, xgb_test = cv_model(xgb, x_train, y_train, x_test, "xgb")
return xgb_train, xgb_test
def cat_model(x_train, y_train, x_test):
cat_train, cat_test = cv_model(CatBoostRegressor, x_train, y_train, x_test, "cat")
return cat_train, cat_test
lgb_train, lgb_test = lgb_model(x_train, y_train, x_test)
[706] training's auc: 0.771324 valid_1's auc: 0.731887
[0.7320814878889421, 0.7279015876934286, 0.7331203287449972, 0.731886588682118]
************************************ 5 ************************************
Training until validation scores don't improve for 200 rounds.
[200] training's auc: 0.743113 valid_1's auc: 0.729226
[400] training's auc: 0.7559 valid_1's auc: 0.730816
[600] training's auc: 0.766388 valid_1's auc: 0.73092
[800] training's auc: 0.77627 valid_1's auc: 0.731029
[1000] training's auc: 0.785791 valid_1's auc: 0.730933
Early stopping, best iteration is:
[883] training's auc: 0.780369 valid_1's auc: 0.731096
[0.7320814878889421, 0.7279015876934286, 0.7331203287449972, 0.731886588682118, 0.7310960057774112]
lgb_scotrainre_list: [0.7320814878889421, 0.7279015876934286, 0.7331203287449972, 0.731886588682118, 0.7310960057774112]
lgb_score_mean: 0.7312171997573793
lgb_score_std: 0.001779041696522632
xgb_train, xgb_test = xgb_model(x_train, y_train, x_test)
Will train until eval-auc hasn't improved in 200 rounds.
[200] train-auc:0.728072 eval-auc:0.722913
[400] train-auc:0.735517 eval-auc:0.726582
[600] train-auc:0.740782 eval-auc:0.728449
[800] train-auc:0.745258 eval-auc:0.729653
[1000] train-auc:0.749185 eval-auc:0.730489
[1200] train-auc:0.752723 eval-auc:0.731038
[1400] train-auc:0.755985 eval-auc:0.731466
[1600] train-auc:0.759166 eval-auc:0.731758
[1800] train-auc:0.762205 eval-auc:0.73199
[2000] train-auc:0.765197 eval-auc:0.732145
[2200] train-auc:0.767976 eval-auc:0.732194
Stopping. Best iteration:
[2191] train-auc:0.767852 eval-auc:0.732213
[0.7332460852050292, 0.7300358478747684, 0.7344942212088965, 0.7334876284761012, 0.7322134048106561]
xgb_scotrainre_list: [0.7332460852050292, 0.7300358478747684, 0.7344942212088965, 0.7334876284761012, 0.7322134048106561]
xgb_score_mean: 0.7326954375150903
xgb_score_std: 0.0015147392354657807
cat_train, cat_test = cat_model(x_train, y_train, x_test)
Shrink model to first 3433 iterations.
[0.7326058985428212, 0.7292909146788396, 0.7341207611812285, 0.7324483603137153]
************************************ 5 ************************************
0: learn: 0.4409876 test: 0.4409159 best: 0.4409159 (0) total: 52.3ms remaining: 17m 26s
500: learn: 0.3768055 test: 0.3776229 best: 0.3776229 (500) total: 38s remaining: 24m 38s
1000: learn: 0.3752600 test: 0.3768397 best: 0.3768397 (1000) total: 1m 15s remaining: 23m 57s
1500: learn: 0.3741843 test: 0.3764855 best: 0.3764855 (1500) total: 1m 53s remaining: 23m 16s
2000: learn: 0.3732691 test: 0.3762491 best: 0.3762490 (1998) total: 2m 31s remaining: 22m 40s
2500: learn: 0.3724407 test: 0.3761154 best: 0.3761154 (2500) total: 3m 9s remaining: 22m 5s
3000: learn: 0.3716764 test: 0.3760184 best: 0.3760184 (3000) total: 3m 47s remaining: 21m 26s
3500: learn: 0.3709545 test: 0.3759453 best: 0.3759453 (3500) total: 4m 24s remaining: 20m 47s
Stopped by overfitting detector (50 iterations wait)
bestTest = 0.3759421091
bestIteration = 3544
Shrink model to first 3545 iterations.
[0.7326058985428212, 0.7292909146788396, 0.7341207611812285, 0.7324483603137153, 0.7312334660628076]
cat_scotrainre_list: [0.7326058985428212, 0.7292909146788396, 0.7341207611812285, 0.7324483603137153, 0.7312334660628076]
cat_score_mean: 0.7319398801558824
cat_score_std: 0.001610863965629903
rh_test = lgb_test*0.5 + xgb_test*0.5
testA['isDefault'] = rh_test
testA[['id','isDefault']].to_csv('test_sub.csv', index=False)
我的项目链接以及码源
数据挖掘专栏
数据挖掘实际(金融风控):金融风控之贷款守约预测挑战赛(上篇)
数据挖掘实际(金融风控):金融风控之贷款守约预测挑战赛(下篇)