1 概述本文将介绍如何将 PyTorch 源码转换成 MindSpore 低阶 API 代码, 并在 Ascend 芯片上实现单机单卡训练。下图展现了 MindSpore 高阶 API、低阶 API 和 PyTorch 的训练流程的区别。
与 MindSpore 高阶 API 雷同,低阶 API 训练也须要进行:配置运行信息、数据读取和预处理、网络定义、定义损失函数和优化器。具体步骤同高阶 API。2 结构模型 (低阶 API) 结构模型时,首先将网络原型与损失函数封装,再将组合的模型与优化器封装,最终组合成一个可用于训练的网络。因为训练并验证中,需计算在训练集上的精度,因而返回值中需蕴含网络的输入值。import mindspore from mindspore
import Modelimport mindspore.nn as nnfrom mindspore.ops
import functional as Ffrom mindspore.ops
import operations as P
class BuildTrainNetwork(nn.Cell):
'''Build train network.'''
def __init__(self, my_network, my_criterion, train_batch_size, class_num):
super(BuildTrainNetwork, self).__init__()
self.network = my_network
self.criterion = my_criterion
self.print = P.Print()
# Initialize self.output
self.output = mindspore.Parameter(Tensor(np.ones((train_batch_size,
class_num)), mindspore.float32), requires_grad=False)
def construct(self, input_data, label):
output = self.network(input_data)
# Get the network output and assign it to self.output
self.output = output
loss0 = self.criterion(output, label)
return loss0
class TrainOneStepCellV2(TrainOneStepCell):
'''Build train network.'''
def __init__(self, network, optimizer, sens=1.0):
super(TrainOneStepCellV2, self).__init__(network, optimizer, sens=1.0)
def construct(self, *inputs):
weights = self.weights
loss = self.network(*inputs)
# Obtain self.network from BuildTrainNetwork
output = self.network.output
sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens)
# Get the gradient of the network parameters
grads = self.grad(self.network, weights)(*inputs, sens)
grads = self.grad_reducer(grads)
# Optimize model parameters
loss = F.depend(loss, self.optimizer(grads))
return loss, output
# Construct model
model_constructed = BuildTrainNetwork(net, loss_function, TRAIN_BATCH_SIZE, CLASS_NUM)
model_constructed = TrainOneStepCellV2(model_constructed, opt)3 训练并验证(低阶 API)和 PyTorch 中相似,采纳低阶 API 进行网络训练并验证。具体步骤如下:class CorrectLabelNum(nn.Cell):
def __init__(self):
super(CorrectLabelNum, self).__init__()
self.print = P.Print()
self.argmax = mindspore.ops.Argmax(axis=1)
self.sum = mindspore.ops.ReduceSum()
def construct(self, output, target):
output = self.argmax(output)
correct = self.sum((output == target).astype(mindspore.dtype.float32))
return correct
def train_net(model, network, criterion,
epoch_max, train_path, val_path,
train_batch_size, val_batch_size,
repeat_size):
"""define the training method"""
# Create dataset
ds_train, steps_per_epoch_train = create_dataset(train_path,
do_train=True, batch_size=train_batch_size, repeat_num=repeat_size)
ds_val, steps_per_epoch_val = create_dataset(val_path, do_train=False,
batch_size=val_batch_size, repeat_num=repeat_size)
# CheckPoint CallBack definition
config_ck = CheckpointConfig(save_checkpoint_steps=steps_per_epoch_train,
keep_checkpoint_max=epoch_max)
ckpoint_cb = ModelCheckpoint(prefix="train_resnet_cifar10",
directory="./", config=config_ck)
# Create dict to save internal callback object’s parameters
cb_params = _InternalCallbackParam()
cb_params.train_network = model
cb_params.epoch_num = epoch_max
cb_params.batch_num = steps_per_epoch_train
cb_params.cur_epoch_num = 0
cb_params.cur_step_num = 0
run_context = RunContext(cb_params)
ckpoint_cb.begin(run_context)
print("============== Starting Training ==============")
correct_num = CorrectLabelNum()
correct_num.set_train(False)
for epoch in range(epoch_max):
print("Epoch:", epoch+1, "/", epoch_max)
train_loss = 0
train_correct = 0
train_total = 0
for _, (data, gt_classes) in enumerate(ds_train):
model.set_train()
loss, output = model(data, gt_classes)
train_loss += loss
correct = correct_num(output, gt_classes)
correct = correct.asnumpy()
train_correct += correct.sum()
# Update current step number
cb_params.cur_step_num += 1
# Check whether to save checkpoint or not
ckpoint_cb.step_end(run_context)
cb_params.cur_epoch_num += 1
my_train_loss = train_loss/steps_per_epoch_train
my_train_accuracy = 100*train_correct/(train_batch_size*
steps_per_epoch_train)
print('Train Loss:', my_train_loss)
print('Train Accuracy:', my_train_accuracy, '%')
print('evaluating {}/{} ...'.format(epoch + 1, epoch_max))
val_loss = 0
val_correct = 0
for _, (data, gt_classes) in enumerate(ds_val):
network.set_train(False)
output = network(data)
loss = criterion(output, gt_classes)
val_loss += loss
correct = correct_num(output, gt_classes)
correct = correct.asnumpy()
val_correct += correct.sum()
my_val_loss = val_loss/steps_per_epoch_val
my_val_accuracy = 100*val_correct/(val_batch_size*steps_per_epoch_val)
print('Validation Loss:', my_val_loss)
print('Validation Accuracy:', my_val_accuracy, '%')
print("--------- trains out ---------")4 运行脚本启动命令:python MindSpore_1P_low_API.py --data_path=xxx --epoch_num=xxx 在开发环境的 Terminal 中运行脚本,能够看到网络输入后果:
注:因为高阶 API 采纳数据下沉模式进行训练,而低阶 API 不反对数据下沉训练,因而高阶 API 比低阶 API 训练速度快。性能比照:低阶 API: 2000 imgs/sec;高阶 API: 2200 imgs/sec 具体代码请返回 MindSpore 论坛进行下载:华为云论坛_云计算论坛_开发者论坛_技术论坛 - 华为云