关于机器学习:50个常用的Numpy函数解释参数和使用示例

31次阅读

共计 9639 个字符,预计需要花费 25 分钟才能阅读完成。

Numpy 是 python 中最有用的工具之一。它能够无效地解决大容量数据。应用 NumPy 的最大起因之一是它有很多解决数组的函数。在本文中,将介绍 NumPy 在数据迷信中最重要和最有用的一些函数。

创立数组

1、Array

它用于创立一维或多维数组

Dtype: 生成数组所需的数据类型。

ndim: 指定生成数组的最小维度数。

import numpy as np
np.array([1,2,3,4,5])
----------------
array([1, 2, 3, 4, 5, 6])

还能够应用此函数将 pandas 的 df 和 series 转为 NumPy 数组。

sex = pd.Series(['Male','Male','Female'])
np.array(sex)
------------------------
array(['Male', 'Male', 'Female'], dtype=object)

2、Linspace

创立一个具备指定距离的浮点数的数组。

start: 起始数字

end: 完结

Num: 要生成的样本数,默认为 50。

np.linspace(10,100,10)
--------------------------------
array([10.,  20.,  30.,  40.,  50.,  60.,  70.,  80.,  90., 100.])

3、Arange

在给定的距离内返回具备肯定步长的整数。

step: 数值步长。

np.arange(5,10,2)
-----------------------
array([5, 7, 9])

4、Uniform

在上上限之间的均匀分布中生成随机样本。

np.random.uniform(5,10,size = 4)
------------
array([6.47445571, 5.60725873, 8.82192327, 7.47674099])

np.random.uniform(size = 5)
------------
array([0.83358092, 0.41776134, 0.72349553])

np.random.uniform(size = (2,3))
------------
array([[0.7032511 , 0.63212039, 0.6779683],
       [0.81150812, 0.26845613, 0.99535264]])

5、Random.randint

在一个范畴内生成 n 个随机整数样本。

np.random.randint(5,10,10)
------------------------------
array([6, 8, 9, 9, 7, 6, 9, 8, 5, 9])

6、Random.random

生成 n 个随机浮点数样本。

np.random.random(3)
---------------------------
array([0.87656396, 0.24706716, 0.98950278])

7、Logspace

在对数尺度上生成距离平均的数字。

Start: 序列的起始值。

End: 序列的最初一个值。

endpoint: 如果为 True,最初一个样本将蕴含在序列中。

base: 底数。默认是 10。

np.logspace(0,10,5,base=2)
------------------
array([1.00000000e+00, 5.65685425e+00, 3.20000000e+01, 1.81019336e+02,1.02400000e+03])

8、zeroes

np.zeroes 会创立一个全副为 0 的数组。

shape: 阵列的形态。

Dtype: 生成数组所需的数据类型。’ int ‘ 或默认 ’ float ‘

np.zeros((2,3),dtype='int')
---------------
array([[0, 0, 0],
       [0, 0, 0]])

np.zeros(5)
-----------------
array([0., 0., 0., 0., 0.])

9、ones

np.ones 函数创立一个全副为 1 的数组。

np.ones((3,4))
------------------
array([[1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.]])

10、full

创立一个独自值的 n 维数组。

fill_value: 填充值。

np.full((2,4),fill_value=2)
--------------
array([[2, 2, 2, 2],
       [2, 2, 2, 2]])(2,4) : ꜱʜᴀᴘᴇ

11、Identity

创立具备指定维度的单位矩阵。

np.identity(4)
----------
array([[1., 0., 0., 0.],
       [0., 1., 0., 0.],
       [0., 0., 1., 0.],
       [0., 0., 0., 1.]])#ᴅᴇꜰᴀᴜʟᴛ ᴅᴀᴛᴀ ᴛʏᴘᴇ ɪꜱ `ꜰʟᴏᴀᴛ`

数组操作

12、min

返回数组中的最小值。

axis: 用于操作的轴。

out: 用于存储输入的数组。

arr = np.array([1,1,2,3,3,4,5,6,6,2])
np.min(arr)
----------------
1

13、max

返回数组中的最大值。

np.max(arr)
------------------
6

14、unique

返回一个所有惟一元素排序的数组。

return_index: 如果为 True,返回数组的索引。

return_inverse: 如果为 True,返回惟一数组的下标。

return_counts: 如果为 True,返回数组中每个惟一元素呈现的次数。

axis: 要操作的轴。默认状况下,数组被认为是扁平的。

np.unique(arr,return_counts=True)
---------------------
(array([1, 2, 3, 4, 5, 6]),             ## Unique elements
 array([2, 2, 2, 1, 1, 2], dtype=int64) ## Count
)

15、mean

返回数组的平均数

np.mean(arr,dtype='int')
-------------------------------
3

16、medain

返回数组的中位数。

arr = np.array([[1,2,3],[5,8,4]])
np.median(arr)
-----------------------------
3.5

17、digitize

返回输出数组中每个值所属的容器的索引。

bin:容器的数组。

right: 示意该距离是否包含左边或右边的 bin。

a = np.array([-0.9, 0.5, 0.9, 1, 1.2, 1.4, 3.6, 4.7, 5.3])
bins = np.array([0,1,2,3])
np.digitize(a,bins)
-------------------------------
array([0, 1, 1, 2, 2, 2, 4, 4, 4], dtype=int64)
Exp        Value
x < 0     :   0
0 <= x <1 :   1
1 <= x <2 :   2
2 <= x <3 :   3
3 <=x     :   4
Compares -0.9 to 0, here x < 0 so Put 0 in resulting array.
Compares  0.5 to 0, here 0 <= x <1 so Put 1.
Compares 5.4 to 4, here 3<=x so Put 4

18、reshape

它是 NumPy 中最罕用的函数之一。它返回一个数组,其中蕴含具备新形态的雷同数据。

A = np.random.randint(15,size=(4,3))
A
----------------------
array([[8, 14,  1],
       [8, 11,  4],
       [9,  4,  1],
       [13, 13, 11]])

A.reshape(3,4)
-----------------
array([[8, 14,  1,  8],
       [11,  4,  9,  4],
       [1, 13, 13, 11]])

A.reshape(-1)  
-------------------
array([8, 14,  1,  8, 11,  4,  9,  4,  1, 13, 13, 11])

19、expand_dims

它用于扩大数组的维度。

arr = np.array([8, 14,  1,  8, 11,  4,  9,  4, 1, 13, 13, 11])
np.expand_dims(A,axis=0)
-------------------------
array([[8, 14,  1,  8, 11,  4,  9,  4,  1, 13, 13, 11]])

np.expand_dims(A,axis=1)
---------------------------
array([[8],
       [14],
       [1],
       [8],
       [11],
       [4],
       [9],
       [4],
       [1],
       [13],
       [13],
       [11]])

20、squeeze

通过移除一个繁多维度来升高数组的维度。

arr = np.array([[8],[14],[1],[8],[11],[4],[9],[4],[1],[13],[13],[11]])
np.squeeze(arr)
---------------------------
array([8, 14,  1,  8, 11,  4,  9,  4,  1, 13, 13, 11])

21、count_nonzero

计算所有非零元素并返回它们的计数。

a = np.array([0,0,1,1,1,0])
np.count_nonzero(a)
--------------------------
3

22、argwhere

查找并返回非零元素的所有下标。

a = np.array([0,0,1,1,1,0])
np.argwhere(a)
---------------------
array([[2],[3],[4]], dtype=int64)

23、argmax & argmin

argmax 返回数组中 Max 元素的索引。它能够用于多类图像分类问题中取得高概率预测标签的指标。

arr = np.array([[0.12,0.64,0.19,0.05]])
np.argmax(arr)
---------
1

argmin 将返回数组中 min 元素的索引。

np.argmin(min)
------
3

24、sort

对数组排序。

kind: 要应用的排序算法。{‘quicksort’,‘mergesort’,‘heapsort’,‘stable’}

arr = np.array([2,3,1,7,4,5])
np.sort(arr)
----------------
array([1, 2, 3, 4, 5, 7])

25、abs

返回数组中元素的绝对值。当数组中蕴含正数时,它很有用。

A = np.array([[1,-3,4],[-2,-4,3]])np.abs(A)
---------------
array([[1, 3, 4],
       [2, 4, 3]])

26、round

将浮点值四舍五入到指定数目的小数点。

decimals: 要保留的小数点的个数。

a = np.random.random(size=(3,4))
a
-----
array([[0.81695699, 0.42564822, 0.65951417, 0.2731807],
       [0.7017702 , 0.12535894, 0.06747666, 0.55733467],
       [0.91464488, 0.26259026, 0.88966237, 0.59253923]])
       

np.round(a,decimals=0)
------------
array([[1., 0., 1., 1.],
       [1., 1., 1., 1.],
       [0., 1., 0., 1.]])

np.round(a,decimals=1)
-------------
array([[0.8, 0. , 0.6, 0.6],
       [0.5, 0.7, 0.7, 0.8],
       [0.3, 0.9, 0.5, 0.7]])

27、clip

它能够将数组的裁剪值放弃在一个范畴内。

arr = np.array([0,1,-3,-4,5,6,7,2,3])
arr.clip(0,5)
-----------------
array([0, 1, 0, 0, 5, 5, 5, 2, 3])

arr.clip(0,3)
------------------
array([0, 1, 0, 0, 3, 3, 3, 2, 3])

arr.clip(3,5)
------------------
array([3, 3, 3, 3, 5, 5, 5, 3, 3])

替换数组中的值

28、where

返回满足条件的数组元素。

condition: 匹配的条件。如果 true 则返回 x,否则 y。

a = np.arange(12).reshape(4,3)
a
-------
array([[0,  1,  2],
       [3,  4,  5],
       [6,  7,  8],
       [9, 10, 11]])
       
np.where(a>5)      ## Get The Index
--------------------
(array([2, 2, 2, 3, 3, 3], dtype=int64),
 array([0, 1, 2, 0, 1, 2], dtype=int64))

 a[np.where(a>5)]  ## Get Values
--------------------------
array([6,  7,  8,  9, 10, 11])

它还能够用来替换 pandas df 中的元素。

np.where(data[feature].isnull(), 1, 0)

29、put

用给定的值替换数组中指定的元素。

a: 数组

Ind: 须要替换的索引。

V: 替换值。

arr = np.array([1,2,3,4,5,6])
arr
--------
array([1, 2, 3, 4, 5, 6])

np.put(arr,[1,2],[6,7])
arr
--------
array([1, 6, 7, 4, 5, 6])

30、copyto

将一个数组的内容复制到另一个数组中。

dst:指标

src:起源

arr1 = np.array([1,2,3])
arr2 = np.array([4,5,6])
print("Before arr1",arr1)
print("Before arr2",arr1)
np.copyto(arr1,arr2)
print("After arr1",arr1)
print("After arr2",arr2)
---------------------------
Before arr1 [1 2 3]
Before arr2 [4 5 6]

After arr1 [4 5 6]
After arr2 [4 5 6]

汇合操作

31、查找公共元素

intersect1d 函数以排序的形式返回两个数组中所有惟一的值。

Assume_unique: 如果为真值,则假如输出数组都是惟一的。

Return_indices: 如果为真,则返回公共元素的索引。

ar1 = np.array([1,2,3,4,5,6])
ar2 = np.array([3,4,5,8,9,1])
np.intersect1d(ar1,ar2)
---------------
array([1, 3, 4, 5])

np.intersect1d(ar1,ar2,return_indices=True)
---------------
(array([1, 3, 4, 5]),                 ## Common Elements
 array([0, 2, 3, 4], dtype=int64),    
 array([5, 0, 1, 2], dtype=int64))

32、查找不同元素

np.setdiff1d 函数返回 arr1 中在 arr2 中不存在的所有惟一元素。

a = np.array([1, 7, 3, 2, 4, 1])
b = np.array([9, 2, 5, 6, 7, 8])
np.setdiff1d(a, b)
---------------------
array([1, 3, 4])

33、从两个数组中提取惟一元素

Setxor1d 将按程序返回两个数组中所有惟一的值。

a = np.array([1, 2, 3, 4, 6])
b = np.array([1, 4, 9, 4, 36])
np.setxor1d(a,b)
--------------------
array([2,  3,  6,  9, 36])

34、合并

Union1d 函数将两个数组合并为一个。

a = np.array([1, 2, 3, 4, 5])
b = np.array([1, 3, 5, 4, 36])
np.union1d(a,b)
-------------------
array([1,  2,  3,  4,  5, 36])

数组宰割

35、程度宰割

Hsplit 函数将数据程度宰割为 n 个相等的局部。

A = np.array([[3,4,5,2],[6,7,2,6]])
np.hsplit(A,2)    ## splits the data into two equal parts
---------------
[array([[3, 4],[6, 7]]),  array([[5, 2],[2, 6]])  ]

np.hsplit(A,4)    ## splits the data into four equal parts
-----------------
[array([[3],[6]]),  array([[4],[7]]),
   array([[5],[2]]),  array([[2],[6]])  ]

36、垂直宰割

Vsplit 将数据垂直宰割为 n 个相等的局部。

A = np.array([[3,4,5,2],[6,7,2,6]])
np.vsplit(A,2)
----------------
[array([[3, 4, 5, 2]]),  array([[6, 7, 2, 6]]) ]

数组叠加

37、程度叠加

hstack 将在另一个数组的开端追加一个数组。

a = np.array([1,2,3,4,5])
b = np.array([1,4,9,16,25])

np.hstack((a,b))
---------------------
array([1,  2,  3,  4,  5,  1,  4,  9, 16, 25])

38、垂直叠加

vstack 将一个数组重叠在另一个数组上。

np.vstack((a,b))
----------------------
array([[1,  2,  3,  4,  5],
       [1,  4,  9, 16, 25]])

数组比拟

39、allclose

如果两个数组的形态雷同,则 Allclose 函数依据公差值查找两个数组是否相等或近似相等。

a = np.array([0.25,0.4,0.6,0.32])
b = np.array([0.26,0.3,0.7,0.32])

tolerance = 0.1           ## Total Difference 
np.allclose(a,b,tolerance)
---------
False

tolerance = 0.5
np.allclose(a,b,tolerance)
----------
True

40、equal

它比拟两个数组的每个元素,如果元素匹配就返回 True。

np.equal(arr1,arr2)
-------------
array([True,  True,  True, False,  True,  True])

反复的数组元素

repeat

它用于反复数组中的元素 n 次。

A: 反复的元素

Repeats: 反复的次数。

np.repeat('2017',3)
---------------------
array(['2017', '2017', '2017'], dtype='<U4')

让咱们来看一个更理论的示例,咱们有一个蕴含按年数量销售的数据集。

fruits = pd.DataFrame([['Mango',40],
    ['Apple',90],
    ['Banana',130]
],columns=['Product','ContainerSales'])
fruits

在数据集中,短少年份列。咱们尝试应用 numpy 增加它。

fruits['year'] = np.repeat(2020,fruits.shape[0])
fruits

41、tile

通过反复 A,rep 次来结构一个数组。

np.tile("Ram",5)
-------
array(['Ram', 'Ram', 'Ram', 'Ram', 'Ram'], dtype='<U3')

np.tile(3,(2,3))
-------
array([[3, 3, 3],
       [3, 3, 3]])

爱因斯坦求和

42、einsum

此函数用于计算数组上的多维和线性代数运算。

a = np.arange(1,10).reshape(3,3)
b = np.arange(21,30).reshape(3,3)

np.einsum('ii->i',a)
------------
array([1, 5, 9])

np.einsum('ji',a)
------------
array([[1, 4, 7],
       [2, 5, 8],
       [3, 6, 9]])
       
np.einsum('ij,jk',a,b)
------------
array([[150, 156, 162],
       [366, 381, 396],
       [582, 606, 630]])
       
p.einsum('ii',a)
----------
15

统计分析

43、直方图

这是 Numpy 的重要统计分析函数,可计算一组数据的直方图值。

A = np.array([[3, 4, 5, 2],
              [6, 7, 2, 6]])
np.histogram(A)
-------------------
(array([2, 0, 1, 0, 1, 0, 1, 0, 2, 1], dtype=int64),
 array([2. , 2.5, 3. , 3.5, 4. , 4.5, 5. , 5.5, 6. , 6.5, 7.]))

44、百分位数

沿指定轴计算数据的 Q -T- T 百分位数。

a: 输出。

q: 要计算的百分位。

overwrite_input: 如果为 true,则容许输出数组批改两头计算以节俭内存。

a = np.array([[2, 4, 6], [4, 8, 12]])

np.percentile(a, 50)
-----------
5.0

np.percentile(a, 10)
------------
3.0

arr = np.array([2,3,4,1,6,7])
np.percentile(a,5)
------------
2.5

45、标准偏差和方差

std 和 var 是 NumPy 的两个函数,用于计算沿轴的标准偏差和方差。

a = np.array([[2, 4, 6], [4, 8, 12]])

np.std(a,axis=1)
--------
array([1.63299316, 3.26598632])

np.std(a,axis=0)    ## Column Wise
--------
array([1., 2., 3.])

np.var(a,axis=1)
-------------------
array([2.66666667, 10.66666667])

np.var(a,axis=0)
-------------------
array([1., 4., 9.])

数组打印

46、显示带有两个十进制值的浮点数

np.set_printoptions(precision=2)

a = np.array([12.23456,32.34535])
print(a)
------------
array([12.23,32.34])

47、设置打印数组最大值

np.set_printoptions(threshold=np.inf)

48、减少一行中元素的数量

np.set_printoptions(linewidth=100) ## 默认是 75

保留和加载数据

49、保留

savetxt 用于在文本文件中保留数组的内容。

arr = np.linspace(10,100,500).reshape(25,20) 
np.savetxt('array.txt',arr)

50、加载

用于从文本文件加载数组,它以文件名作为参数。

np.loadtxt('array.txt')

以上就是 50 个 numpy 罕用的函数,心愿对你有所帮忙。

https://avoid.overfit.cn/post/f47bb7762ccb41189baff5fe6a10403a

作者:Abhay Parashar

正文完
 0