<!DOCTYPE html>
<html>
<head>
<title>canvas 主动裁剪图片空白区域 </title>
</head>
<body>
<input type="file" id="imageInput" accept="image/*">
<canvas id="canvas" style="display:none;"></canvas>
<div style="margin: 20px 0">
<img id="outputImage" src=""alt=" 剪切后的图片 ">
</div>
<script>
const imageInput = document.getElementById('imageInput');
const canvas = document.getElementById('canvas');
const outputImage = document.getElementById('outputImage');
const ctx = canvas.getContext('2d');
imageInput.addEventListener('change', function (e) {const file = e.target.files[0];
const reader = new FileReader();
reader.onload = function (event) {const img = new Image();
img.src = event.target.result;
img.onload = function () {
canvas.width = img.width;
canvas.height = img.height;
ctx.drawImage(img, 0, 0);
// 获取图像的像素数据
const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
const data = imageData.data;
// 找到非红色像素的边界
let minX = canvas.width;
let minY = canvas.height;
let maxX = -1;
let maxY = -1;
for (let y = 0; y < canvas.height; y++) {for (let x = 0; x < canvas.width; x++) {const index = (y * canvas.width + x) * 4; // 每个像素有 4 个通道(RGBA)const red = data[index];
const green = data[index + 1];
const blue = data[index + 2];
// 判断像素是否为红色 (255, 255, 255)
if (red === 255 && green === 255 && blue === 255) {// 此像素是红色,跳过} else {
// 非红色像素
minX = Math.min(minX, x);
minY = Math.min(minY, y);
maxX = Math.max(maxX, x);
maxY = Math.max(maxY, y);
}
}
}
// 计算剪切后的图像宽度和高度
const croppedWidth = maxX - minX + 1;
const croppedHeight = maxY - minY + 1;
// 创立一个新的 Canvas,将非红色区域绘制到新 Canvas 上
const newCanvas = document.createElement('canvas');
const newCtx = newCanvas.getContext('2d');
newCanvas.width = croppedWidth;
newCanvas.height = croppedHeight;
newCtx.drawImage(canvas, minX, minY, croppedWidth, croppedHeight, 0, 0, croppedWidth, croppedHeight);
// 将解决后的图像显示在页面上的 <img> 元素中
outputImage.src = newCanvas.toDataURL();};
};
reader.readAsDataURL(file);
});
</script>
</body>
</html>