共计 15042 个字符,预计需要花费 38 分钟才能阅读完成。
1. 实现 instanceof 运算符
instanceof 运算符用于检测构造函数的 prototype 属性是否呈现在某个实例对象的原型链上,运算符左侧是实例对象,右侧是构造函数。
const iInstanceof = function (left, right) {let proto = Object.getPrototypeOf(left);
while (true) {if (proto === null) return false;
if (proto === right.prototype) return true;
proto = Object.getPrototypeOf(proto);
}
};
这是常见的实现,咱们也能够用 isPrototypeOf 实现
const iInstanceof = function (left, right) {return right.prototype.isPrototypeOf(left)
};
2. 实现 new 操作符
new 执行过程如下:
- 创立一个新对象;
- 新对象的 [[prototype]] 个性指向构造函数的 prototype 属性;
- 构造函数外部的 this 指向新对象;
- 执行构造函数;
- 如果构造函数返回非空对象,则返回该对象;否则,返回刚创立的新对象;
const iNew = function (fn, ...rest) {let instance = Object.create(fn.prototype);
let res = fn.apply(instance, rest);
return res !== null && (typeof res === 'object' || typeof res === 'function') ? res : instance;
};
3. 实现 Object.assign 办法
浅拷贝办法,只会拷贝源对象本身的且可枚举的属性(包含以 Symbol 为 key 的属性)到指标对象
const iAssign = function (target, ...source) {if (target === null || target === undefined) {throw new TypeError('Cannot convert undefined or null to object');
}
let res = Object(target);
for (let i = 0; i < source.length; i++) {let src = source[i];
let keys = [...Object.keys(src), ...Object.getOwnPropertySymbols(src)];
for (const k of keys) {if (src.propertyIsEnumerable(k)) {res[k] = src[k];
}
}
}
return res;
};
// 放弃 assign 的数据属性统一
Object.defineProperty(Object, 'iAssign', {
value: iAssign,
configurable: true,
enumerable: false,
writable: true
});
4. bind 办法
扭转函数内 this 的值并且传参,返回一个函数
const iBind = function (thisArg, ...args) {
const originFunc = this;
const boundFunc = function (...args1) {
// 解决 bind 之后对返回函数 new 的问题
if (new.target) {if (originFunc.prototype) {boundFunc.prototype = originFunc.prototype;}
const res = originFunc.apply(this, args.concat(args1));
return res !== null && (typeof res === 'object' || typeof res === 'function') ? res : this;
} else {return originFunc.apply(thisArg, args.concat(args1));
}
};
// 解决 length 和 name 属性问题
const desc = Object.getOwnPropertyDescriptors(originFunc);
Object.defineProperties(boundFunc, {
length: Object.assign(desc.length, {value: desc.length < args.length ? 0 : (desc.length - args.length)
}),
name: Object.assign(desc.name, {value: `bound ${desc.name.value}`
})
});
return boundFunc;
};
// 放弃 bind 的数据属性统一
Object.defineProperty(Function.prototype, 'iBind', {
value: iBind,
enumerable: false,
configurable: true,
writable: true
});
5. call 办法
用指定的 this 值和参数来调用函数
const iCall = function (thisArg, ...args) {thisArg = (thisArg === undefined || thisArg === null) ? window : Object(thisArg);
let fn = Symbol('fn');
thisArg[fn] = this;
let res = thisArg[fn](...args);
delete thisArg[fn];
return res;
};
// 放弃 call 的数据属性统一
Object.defineProperty(Function.prototype, 'iCall', {
value: iCall,
configurable: true,
enumerable: false,
writable: true
});
6. 函数柯里化
将一个多参数函数转化为多个嵌套的单参数函数。
const curry = function (targetFn) {return function fn (...rest) {if (targetFn.length === rest.length) {return targetFn.apply(null, rest);
} else {return fn.bind(null, ...rest);
}
};
};
// 用法
function add (a, b, c, d) {return a + b + c + d;}
console.log('柯里化:', curry(add)(1)(2)(3)(4));
// 柯里化:10
7. 函数防抖 debounce 办法
const debounce = function (func, wait = 0, options = {
leading: true,
context: null
}) {
let timer;
let res;
const _debounce = function (...args) {options.context || (options.context = this);
if (timer) {clearTimeout(timer);
}
if (options.leading && !timer) {timer = setTimeout(() => {timer = null;}, wait);
res = func.apply(options.context, args);
} else {timer = setTimeout(() => {res = func.apply(options.context, args);
timer = null;
}, wait);
}
return res;
};
_debounce.cancel = function () {clearTimeout(timer);
timer = null;
};
return _debounce;
};
leading 示意进入时是否立刻执行,如果在 wait 工夫内触发事件,则会将上一个定时器革除,并从新再设置一个 wait 工夫的定时器。
8. 函数节流 throttle 办法
const throttle = function (func, wait = 0, options = {
leading: true,
trailing: false,
context: null
}) {
let timer;
let res;
let previous = 0;
const _throttle = function (...args) {options.context || (options.context = this);
let now = Date.now();
if (!previous && !options.leading) previous = now;
if (now - previous >= wait) {if (timer) {clearTimeout(timer);
timer = null;
}
res = func.apply(options.context, args);
previous = now;
} else if (!timer && options.trailing) {timer = setTimeout(() => {res = func.apply(options.context, args);
previous = 0;
timer = null;
}, wait);
}
return res;
};
_throttle.cancel = function () {
previous = 0;
clearTimeout(timer);
timer = null;
};
return _throttle;
};
函数节流就像水龙头滴水一样,距离 wait 工夫就会触发一次,这里相比函数防抖新增了 trailing 选项,示意是否在最初额定触发一次。
9. 事件公布订阅(EventBus 事件总线)
class EventBus {constructor () {
Object.defineProperty(this, 'handles', {value: {}
});
}
on (eventName, listener) {if (typeof listener !== 'function') {console.error('请传入正确的回调函数');
return;
}
if (!this.handles[eventName]) {this.handles[eventName] = [];}
this.handles[eventName].push(listener);
}
emit (eventName, ...args) {let listeners = this.handles[eventName];
if (!listeners) {console.warn(`${eventName}事件不存在 `);
return;
}
for (const listener of listeners) {listener(...args);
}
}
off (eventName, listener) {if (!listener) {delete this.handles[eventName];
return;
}
let listeners = this.handles[eventName];
if (listeners && listeners.length) {let index = listeners.findIndex(item => item === listener);
listeners.splice(index, 1);
}
}
once (eventName, listener) {if (typeof listener !== 'function') {console.error('请传入正确的回调函数');
return;
}
const onceListener = (...args) => {listener(...args);
this.off(eventName, listener);
};
this.on(eventName, onceListener);
}
}
自定义事件的时候用到,留神一些边界的查看
10. 深拷贝
const deepClone = function (source) {if (source === null || typeof source !== 'object') {return source;}
let res = Array.isArray(source) ? [] : {};
for (const key in source) {if (source.hasOwnProperty(key)) {res[key] = deepClone(source[key]);
}
}
return res;
};
这个是深拷贝的很根底版本,其中存在一些问题,比方循环援用,比方递归爆栈,前面我会专门写一篇文章来展开讨论。
11. 实现 ES6 的 Class
用构造函数模仿,class 只能用 new 创立,不能够间接调用,另外留神一下属性的描述符
const checkNew = function (instance, con) {if (!(instance instanceof con)) {throw new TypeError(`Class constructor ${con.name} cannot be invoked without 'new'`);
}
};
const defineProperties = function (target, obj) {for (const key in obj) {
Object.defineProperty(target, key, {
configurable: true,
enumerable: false,
value: obj[key],
writable: true
});
}
};
const createClass = function (con, proto, staticAttr) {proto && defineProperties(con.prototype, proto);
staticAttr && defineProperties(con, staticAttr);
return con;
};
// 用法
function Person (name) {checkNew(this, Person);
this.name = name;
}
var PersonClass = createClass(Person, {getName: function () {return this.name;}
}, {getAge: function () {}});
12. 实现 ES6 的继承
ES6 外部应用寄生组合式继承,首先用 Object.create 继承原型,并传递第二个参数以将父类构造函数指向本身,同时设置数据属性描述符。
而后用 Object.setPrototypeOf 继承动态属性和静态方法。
const inherit = function (subType, superType) {
// 对 superType 进行类型判断
if (typeof superType !== "function" && superType !== null) {throw new TypeError("Super expression must either be null or a function");
}
subType.prototype = Object.create(superType && superType.prototype, {
constructor: {
configurable: true,
enumerable: false,
value: subType,
writable: true
}
});
// 继承静态方法
superType && Object.setPrototypeOf(subType, superType);
};
// 用法
function superType (name) {this.name = name;}
superType.staticFn = function () {console.log('staticFn');
}
superType.prototype.getName = function () {console.log('name:' + this.name);
}
function subType (name, age) {superType.call(this, name);
this.age = age;
}
inherit(subType, superType);
// 必须在继承之后再往 subType 中增加原型办法,否则会被笼罩掉
subType.prototype.getAge = function () {console.log('age:' + this.age);
}
let subTypeInstance = new subType('Twittytop', 29);
subType.staticFn();
subTypeInstance.getName();
subTypeInstance.getAge();
13. 图片懒加载
// 获取窗口高度
function getWindowHeight () {return window.innerHeight || document.documentElement.clientHeight || document.body.clientHeight;}
function getTop (e) {
let t = e.offsetTop;
while (e = e.offsetParent) {t += e.offsetTop;}
return t;
}
const delta = 30;
let count = 0;
function lazyLoad (imgs) {const winH = getWindowHeight();
const s = document.documentElement.scrollTop || document.body.scrollTop;
for (let i = 0, l = imgs.length; i < l; i++) {if (winH + s + delta > getTop(imgs[i]) && getTop(imgs[i]) + imgs[i].offsetHeight + delta > s) {if (!imgs[i].src) {imgs[i].src = imgs[i].getAttribute('data-src');
count++;
}
if (count === l) {window.removeEventListener('scroll', handler);
window.removeEventListener('load', handler);
}
}
}
}
const imgs = document.querySelectorAll('img');
const handler = function () {lazyLoad(imgs);
};
window.addEventListener('scroll', handler);
window.addEventListener('load', handler);
当然你也能够用 getBoundingClientRect 办法:
// 获取窗口高度
function getWindowHeight () {return window.innerHeight || document.documentElement.clientHeight || document.body.clientHeight;}
const delta = 30;
let count = 0;
function lazyLoad (imgs) {const winH = getWindowHeight();
for (let i = 0, l = imgs.length; i < l; i++) {const rect = imgs[i].getBoundingClientRect();
if (winH + delta > rect.top && rect.bottom > -delta) {if (!imgs[i].src) {imgs[i].src = imgs[i].getAttribute('data-src');
count++;
}
if (count === l) {window.removeEventListener('scroll', handler);
window.removeEventListener('load', handler);
}
}
}
}
const imgs = document.querySelectorAll('img');
const handler = function () {lazyLoad(imgs);
};
window.addEventListener('scroll', handler);
window.addEventListener('load', handler);
当然你也能够用 IntersectionObserver 办法:
function lazyLoad (imgs) {
let options = {rootMargin: '30px'};
let count = 0;
let observer = new IntersectionObserver(entries => {
entries.forEach(entry => {if (entry.intersectionRatio > 0) {entry.target.src = entry.target.getAttribute('data-src');
count++;
observer.unobserve(entry.target);
if (count === imgs.length) {window.removeEventListener('load', handler);
}
}
});
}, options);
for (let i = 0; i < imgs.length; i++) {observer.observe(imgs[i]);
}
}
const imgs = document.querySelectorAll('img');
const handler = function () {lazyLoad(imgs);
};
window.addEventListener('load', handler);
14. 实现 Object.is 办法
Object.is() 和 === 的区别是 Object.is(0, -0) 返回 false, Object.is(NaN, NaN) 返回 true。
const iIs = function (x, y) {if (x === y) {return x !== 0 || 1 / x === 1 / y;} else {return x !== x && y !== y;}
}
// 放弃 is 的数据属性统一
Object.defineProperty(Function.prototype, 'iIs', {
value: iIs,
configurable: true,
enumerable: false,
writable: true
});
15. 工夫切片
把长工作切割成多个小工作,应用场景是避免一个工作执行工夫过长而阻塞线程
function ts (gen) {if (typeof gen === 'function') gen = gen();
if (!gen || typeof gen.next !== 'function') return;
(function next() {const start = performance.now();
let res = null;
do {res = gen.next();
} while(!res.done && performance.now() - start < 25)
if (res.done) return;
setTimeout(next);
})();}
// 用法
ts(function* () {const start = performance.now();
while (performance.now() - start < 1000) {yield;}
console.log('done!');
});
16. CO(协程)实现
function co (gen) {return new Promise(function (resolve, reject) {if (typeof gen === 'function') gen = gen();
if (!gen || typeof gen.next !== 'function') return resolve(gen);
onFulfilled();
function onFulfilled (res) {
let ret;
try {ret = gen.next(res);
} catch (e) {return reject(e);
}
next(ret);
}
function onRejected (err) {
let ret;
try {ret = gen.throw(err);
} catch (e) {return reject(e);
}
next(ret);
}
function next (ret) {if (ret.done) return resolve(ret.value);
let val = Promise.resolve(ret.value);
return val.then(onFulfilled, onRejected);
}
});
}
// 用法
co(function* () {let res1 = yield Promise.resolve(1);
console.log(res1);
let res2 = yield Promise.resolve(2);
console.log(res2);
let res3 = yield Promise.resolve(3);
console.log(res3);
return res1 + res2 + res3;
}).then(value => {console.log('add:' + value);
}, function (err) {console.error(err.stack);
});
co 承受一个生成器函数,当遇到 yield 时就暂停执行,交出控制权,当其余程序执行结束后,将后果返回并从中断的中央继续执行,如此往返,始终到所有的工作都执行结束,最初返回一个 Promise 并将生成器函数的返回值作为 resolve 值。
咱们将 * 换成 async,将 yield 换成 await 时,就和咱们常常用的 async/await 是一样的,所以说 async/await 是生成器函数的语法糖。
17. 单例模式
const getSingleton = function (fn) {
let instance;
return function () {return instance || (instance = new (fn.bind(this, ...arguments)));
};
};
// 用法
function Person (name) {this.name = name;}
let singleton = getSingleton(Person);
let instance1 = new singleton('Twittop1');
let instance2 = new singleton('Twittop2');
console.log(instance1 === instance2); // true
当然你也能够用 ES6 的 Proxy 实现:
const getSingleton = function (fn) {
let instance;
const handler = {construct (target, argumentsList) {return instance || (instance = Reflect.construct(target, argumentsList));
}
}
return new Proxy(fn, handler);
};
// 用法
function Person (name) {this.name = name;}
let singleton = getSingleton(Person);
let instance1 = new singleton('Twittop1');
let instance2 = new singleton('Twittop2');
console.log(instance1 === instance2); // true
18. Promise
function isFunction (obj) {return typeof obj === 'function';}
function isObject (obj) {return !!(obj && typeof obj === 'object');
}
function isPromise (obj) {return obj instanceof Promise;}
function isThenable (obj) {return (isFunction(obj) || isObject(obj)) && 'then' in obj;
}
function transition (promise, state, result) {
// 一旦变成非 pending 状态,就不可逆
if (promise.state !== 'pending') return;
promise.state = state;
promise.result = result;
setTimeout(() => promise.callbacks.forEach(callback => handleCallback(callback, state, result)));
}
function resolvePromise (promise, result, resolve, reject) {if (promise === result) {return reject(new TypeError('Chaining cycle detected for promise'));
}
if (isPromise(result)) {return result.then(resolve, reject);
}
if (isThenable(result)) {
try {
let then = result.then;
if (isFunction(then)) {return new Promise(then.bind(result)).then(resolve, reject);
}
} catch (error) {return reject(error);
}
}
resolve(result);
}
function handleCallback (callback, state, result) {let { onFulfilled, onRejected, resolve, reject} = callback;
try {if (state === 'fulfilled') {isFunction(onFulfilled) ? resolve(onFulfilled(result)) : resolve(result);
} else if (state === 'rejected') {isFunction(onRejected) ? resolve(onRejected(result)) : reject(result);
}
} catch (e) {reject(e);
}
}
class Promise {constructor (executor) {
this.state = 'pending';
this.result = undefined;
this.callbacks = [];
let onFulfilled = value => transition(this, 'fulfilled', value);
let onRejected = reason => transition(this, 'rejected', reason);
// 保障 resolve 或 reject 只有一次调用
let flag = false;
let resolve = value => {if (flag) return;
flag = true;
resolvePromise(this, value, onFulfilled, onRejected);
};
let reject = reason => {if (flag) return;
flag = true;
onRejected(reason);
};
try {executor(resolve, reject);
} catch (e) {reject(e);
}
}
then (onFulfilled, onRejected) {return new Promise((resolve, reject) => {let callback = { onFulfilled, onRejected, resolve, reject};
if (this.state === 'pending') {this.callbacks.push(callback);
} else {setTimeout(() => {handleCallback(callback, this.state, this.result);
});
}
});
}
catch (onRejected) {this.then(undefined, onRejected);
}
// 无论胜利还是失败都会执行,个别都会传递前一个 promise 的状态,只有在 onFinally 抛出谬误(显示抛出或 reject)的时候才会返回一个 rejected 的 promise
finally (onFinally) {
return this.then(val => Promise.resolve(onFinally()).then(() => val),
rea => Promise.resolve(onFinally()).then(() => { throw rea;})
);
}
static resolve (value) {if (isPromise(value)) return value;
return new Promise ((resolve, reject) => resolve(value));
}
static reject (reason) {return new Promise ((resolve, reject) => reject(reason));
}
// 当所有 promise 都返回 fulfilled 的时候,它才会返回一个 fulfilled 的 promise,外面蕴含了对应后果的数组,否则只有一个 promise 返回 rejected,它就会返回一个 rejected 的 promise,其中蕴含第一个 rejected 的 promise 抛出的错误信息
static all (iterable) {return new Promise ((resolve, reject) => {
let count = 0;
let arr = [];
for (let i = 0, l = iterable.length; i < l; i ++) {iterable[i].then(val => {
count++;
arr[i] = val;
if (count === l) {reresolve(arr);
}
}, reject);
}
});
}
// 只有有一个 promise 返回 fulfilled 或 rejected,它就会返回一个 fulfilled 或 rejected 的 promise
static race (iterable) {return new Promise ((resolve, reject) => {for (const p of iterable) {p.then(resolve, reject);
}
});
}
// 当所有 promise 都 fulfilled 或 rejected 后,返回一个蕴含对应后果的数组
static allSettled (iterable) {return new Promise ((resolve, reject) => {
let count = 0;
let arr = [];
function handle (state, index, result) {arr[index] = {
status: state,
[state === 'fulfilled' ? 'value' : 'reason']: result
};
count++;
if (count === iterable.length) {resolve(arr);
}
}
for (let i = 0, l = iterable.length; i < l; i ++) {iterable[i].then(val => handle ('fulfilled', i, val), rea => handle ('rejected', i, rea));
}
});
}
// 只有有一个 promise 胜利,就会返回一个胜利的 promise,否则返回一个 AggregateError 类型实例的失败 promise
static any (iterable) {return new Promise ((resolve, reject) => {
let count = 0;
let arr = [];
for (let i = 0, l = iterable.length; i < l; i ++) {iterable[i].then(resolve, rea => {
count++;
arr[i] = rea;
if (count === l) {reject(new AggregateError(arr));
}
});
}
});
}
}
Promise 有三种状态 pending、fulfilled 和 rejected,pending 是最后的状态,一旦落定为 fulfilled 或 rejected 状态,就不可逆。且一旦执行 resolve 或 reject,前面的 resolve 或 reject 就不会失效。then 传入的回调函数有可能提早执行,所以需放到 callbacks 数组中,等状态变更的时候再取出执行。
参考资料
https://juejin.cn/post/684490…
https://github.com/berwin/tim…
CO 模块
100 行代码实现 Promises/A+ 标准