解决 TS 问题的最好方法就是多练,这次解读 type-challenges Medium 难度 63~68 题。
精读
Unique
实现 Unique<T>
,对 T
去重:
type Res = Unique<[1, 1, 2, 2, 3, 3]> // expected to be [1, 2, 3]
type Res1 = Unique<[1, 2, 3, 4, 4, 5, 6, 7]> // expected to be [1, 2, 3, 4, 5, 6, 7]
type Res2 = Unique<[1, 'a', 2, 'b', 2, 'a']> // expected to be [1, "a", 2, "b"]
type Res3 = Unique<[string, number, 1, 'a', 1, string, 2, 'b', 2, number]> // expected to be [string, number, 1, "a", 2, "b"]
type Res4 = Unique<[unknown, unknown, any, any, never, never]> // expected to be [unknown, any, never]
去重须要一直递归产生去重后后果,因而须要一个辅助变量 R
配合,并把 T
用 infer
逐个拆解,判断第一个字符是否在后果数组里,如果不在就塞进去:
type Unique<T, R extends any[] = []> = T extends [infer F, ...infer Rest]
? Includes<R, F> extends true
? Unique<Rest, R>
: Unique<Rest, [...R, F]>
: R
那么剩下的问题就是,如何判断一个对象是否呈现在数组中,应用递归能够轻松实现:
type Includes<Arr, Value> = Arr extends [infer F, ...infer Rest]
? Equal<F, Value> extends true
? true
: Includes<Rest, Value>
: false
每次取首项,如果等于 Value
间接返回 true
,否则持续递归,如果数组递归完结(不形成 Arr extends [xxx]
的模式)阐明递归完了还没有找到相等值,间接返回 false
。
把这两个函数组合一下就能轻松解决本题:
// 本题答案
type Unique<T, R extends any[] = []> = T extends [infer F, ...infer Rest]
? Includes<R, F> extends true
? Unique<Rest, R>
: Unique<Rest, [...R, F]>
: R
type Includes<Arr, Value> = Arr extends [infer F, ...infer Rest]
? Equal<F, Value> extends true
? true
: Includes<Rest, Value>
: false
MapTypes
实现 MapTypes<T, R>
,依据对象 R
的形容来替换类型:
type StringToNumber = {
mapFrom: string; // value of key which value is string
mapTo: number; // will be transformed for number
}
MapTypes<{iWillBeANumberOneDay: string}, StringToNumber> // gives {iWillBeANumberOneDay: number;}
因为要返回一个新对象,所以咱们应用 {[K in keyof T]: ... }
的模式形容后果对象。而后就要对 Value 类型进行判断了,为了避免 never
的作用,咱们包一层数组进行判断:
type MapTypes<T, R extends {mapFrom: any; mapTo: any}> = {[K in keyof T]: [T[K]] extends [R['mapFrom']] ? R['mapTo'] : T[K]
}
但这个解答还有一个 case 无奈通过:
MapTypes<{iWillBeNumberOrDate: string}, StringToDate | StringToNumber> // gives {iWillBeNumberOrDate: number | Date;}
咱们须要思考到 Union 散发机制以及每次都要从新匹配一次是否命中 mapFrom
,因而须要抽一个函数:
type Transform<R extends {mapFrom: any; mapTo: any}, T> = R extends any
? T extends R['mapFrom']
? R['mapTo']
: never
: never
为什么要 R extends any
看似无意义的写法呢?起因是 R
是联结类型,这样能够触发散发机制,让每一个类型独立判断。所以最终答案就是:
// 本题答案
type MapTypes<T, R extends {mapFrom: any; mapTo: any}> = {[K in keyof T]: [T[K]] extends [R['mapFrom']] ? Transform<R, T[K]> : T[K]
}
type Transform<R extends {mapFrom: any; mapTo: any}, T> = R extends any
? T extends R['mapFrom']
? R['mapTo']
: never
: never
Construct Tuple
生成指定长度的 Tuple:
type result = ConstructTuple<2> // expect to be [unknown, unkonwn]
比拟容易想到的方法是利用下标递归:
type ConstructTuple<
L extends number,
I extends number[] = []
> = I['length'] extends L ? [] : [unknown, ...ConstructTuple<L, [1, ...I]>]
但在如下测试用例会遇到递归长度过深的问题:
ConstructTuple<999> // Type instantiation is excessively deep and possibly infinite
一种解法是利用 minusOne 提到的 CountTo
办法快捷生成指定长度数组,把 1
替换为 unknown
即可:
// 本题答案
type ConstructTuple<L extends number> = CountTo<`${L}`>
type CountTo<
T extends string,
Count extends unknown[] = []
> = T extends `${infer First}${infer Rest}`
? CountTo<Rest, N<Count>[keyof N & First]>
: Count
type N<T extends unknown[] = []> = {'0': [...T, ...T, ...T, ...T, ...T, ...T, ...T, ...T, ...T, ...T]
'1': [...T, ...T, ...T, ...T, ...T, ...T, ...T, ...T, ...T, ...T, unknown]
'2': [
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
unknown,
unknown
]
'3': [
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
unknown,
unknown,
unknown
]
'4': [
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
unknown,
unknown,
unknown,
unknown
]
'5': [
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
unknown,
unknown,
unknown,
unknown,
unknown
]
'6': [
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
unknown,
unknown,
unknown,
unknown,
unknown,
unknown
]
'7': [
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
unknown,
unknown,
unknown,
unknown,
unknown,
unknown,
unknown
]
'8': [
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
unknown,
unknown,
unknown,
unknown,
unknown,
unknown,
unknown,
unknown
]
'9': [
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
...T,
unknown,
unknown,
unknown,
unknown,
unknown,
unknown,
unknown,
unknown,
unknown
]
}
Number Range
实现 NumberRange<T, P>
,生成数字为从 T
到 P
的联结类型:
type result = NumberRange<2, 9> // | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
以 NumberRange<2, 9>
为例,咱们须要实现 2
到 9
的递增递归,因而须要一个数组长度从 2
递增到 9
的辅助变量 U
,以及一个存储后果的辅助变量 R
:
type NumberRange<T, P, U extends any[] = 长度为 T 的数组, R>
所以咱们先实现 LengthTo
函数,传入长度 N
,返回一个长度为 N
的数组:
type LengthTo<N extends number, R extends any[] = []> =
R['length'] extends N ? R : LengthTo<N, [0, ...R]>
而后就是递归了:
// 本题答案
type NumberRange<T extends number, P extends number, U extends any[] = LengthTo<T>, R extends number = never> =
U['length'] extends P ? (R | U['length']
) : (NumberRange<T, P, [0, ...U], R | U['length']>
)
R
的默认值为 never
十分重要,否则默认值为 any
,最终类型就会被放大为 any
。
Combination
实现 Combination<T>
:
// expected to be `"foo" | "bar" | "baz" | "foo bar" | "foo bar baz" | "foo baz" | "foo baz bar" | "bar foo" | "bar foo baz" | "bar baz" | "bar baz foo" | "baz foo" | "baz foo bar" | "baz bar" | "baz bar foo"`
type Keys = Combination<['foo', 'bar', 'baz']>
本题和 AllCombination
相似:
type AllCombinations_ABC = AllCombinations<'ABC'>
// should be ''|'A'|'B'|'C'|'AB'|'AC'|'BA'|'BC'|'CA'|'CB'|'ABC'|'ACB'|'BAC'|'BCA'|'CAB'|'CBA'
还记得这题吗?咱们要将字符串变成联结类型:
type StrToUnion<S> = S extends `${infer F}${infer R}`
? F | StrToUnion<R>
: never
而本题 Combination
更简略,把数组转换为联结类型只须要 T[number]
。所以本题第一种组合解法是,将 AllCombinations
略微革新下,再利用 Exclude
和 TrimRight
删除多余的空格:
// 本题答案
type AllCombinations<T extends string[], U extends string = T[number]> = [U] extends [never]
? '':'' | {[K in U]: `${K} ${AllCombinations<never, Exclude<U, K>>}` }[U]
type TrimRight<T extends string> = T extends `${infer R} ` ? TrimRight<R> : T
type Combination<T extends string[]> = TrimRight<Exclude<AllCombinations<T>, ''>>
还有一种十分精彩的答案在此剖析一下:
// 本题答案
type Combination<T extends string[], U = T[number], A = U> = U extends infer U extends string
? `${U} ${Combination<T, Exclude<A, U>>}` | U
: never;
仍然利用 T[number]
的个性将数组转成联结类型,再利用联结类型 extends
会分组的个性递归出后果。
之所以不会呈现结尾呈现多余的空格,是因为 U extends infer U extends string
这段判断曾经杜绝了 U
耗费完的状况,如果耗费完会及时返回 never
,所以无需用 TrimRight
解决右侧多余的空格。
至于为什么要定义 A = U
,在后面章节曾经介绍过了,因为联结类型 extends
过程中会进行分组,此时拜访的 U
曾经是具体类型了,但此时拜访 A
还是原始的联结类型 U
。
Subsequence
实现 Subsequence<T>
输入所有可能的子序列:
type A = Subsequence<[1, 2]> // [] | [1] | [2] | [1, 2]
因为是返回数组的全排列,只有每次取第一项,与残余项的递归结构出后果,|
上残余项自身递归的后果就能够了:
// 本题答案
type Subsequence<T extends number[]> = T extends [infer F, ...infer R extends number[]] ? (Subsequence<R> | [F, ...Subsequence<R>]
) : T
总结
对全排列问题有两种经典解法:
- 利用辅助变量形式递归,留神联结类型与字符串、数组之间转换的技巧。
- 间接递归,不借助辅助变量,个别在题目返回类型容易结构时抉择。
探讨地址是:精读《Unique, MapTypes, Construct Tuple…》· Issue #434 · dt-fe/weekly
如果你想参加探讨,请 点击这里,每周都有新的主题,周末或周一公布。前端精读 – 帮你筛选靠谱的内容。
关注 前端精读微信公众号
<img width=200 src=”https://img.alicdn.com/tfs/TB165W0MCzqK1RjSZFLXXcn2XXa-258-258.jpg”>
版权申明:自在转载 - 非商用 - 非衍生 - 放弃署名(创意共享 3.0 许可证)