样例及原理
ThreadPoolExecutor executor = new ThreadPoolExecutor(
2, // 外围线程数
4, // 最大线程数
5, TimeUnit.SECONDS, // 最大线程的回收工夫
new ArrayBlockingQueue<>(999), // 阻塞队列
(Runnable r, ThreadPoolExecutor executor)->{// 自定义回绝策略}
);
@Test
public void test(){executor.execute(()->{// 交给线程池执行的工作});
Future<String> future = executor.submit(()->{
// 交给线程池执行的有返回值的工作
return "";
});
}
execute 原理
线程池工作流程
- 工作线程数 < 外围线程数,创立线程
线程始终处于 while 循环中(不被开释),首次间接执行工作,之后以 take 形式获取阻塞队列工作
- 工作线程数 >= 外围线程数,offer 形式将工作退出阻塞队列
- offer 胜利:什么都不必做,期待队列工作被生产即可
- offer 失败:创立最大线程;
最大线程会采纳poll+ 超时工夫
的形式获取阻塞队列工作;超时未获取到工作,会跳出循环最大线程开释
超级变量 ctl:记录线程池状态及个数
// -- 线程池生命周期的各个状态(COUNT_BITS=29)private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// -- 最高 4 位标识状态,其余低位表线程个数
private final AtomicInteger ctl = new AtomicInteger(// (RUNNING | 0)
// 初始值:1110 0000 0000 0000 0000 0000 0000 0000
ctlOf(RUNNING, 0));
// 0001 1111 1111 1111 1111 1111 1111 1111
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// == 1. 获取工作线程数办法,取低 28 位
// 入参 c:ctl.get()
// 以 ctl 初始值为例:// 1110 0000 0000 0000 0000 0000 0000 0000
// 0001 1111 1111 1111 1111 1111 1111 1111 (CAPACITY)
// & 操作后果是 0
private static int workerCountOf(int c) {return c & CAPACITY;}
// == 2. 获取状态的办法,取高 4 位
// 入参 c:ctl.get()
// 以 ctl 初始值为例:// 1110 0000 0000 0000 0000 0000 0000 0000
// 1110 0000 0000 0000 0000 0000 0000 0000 (~CAPACITY)
// & 操作后果是 RUNNING
private static int runStateOf(int c) {return c & ~CAPACITY;}
线程池接管工作的外围解决
public void execute(Runnable command) {if (command == null)
throw new NullPointerException();
int c = ctl.get();
// == 1. 小于外围线程数,减少工作线程
if (workerCountOf(c) < corePoolSize) {if (addWorker(command, true))
return;
c = ctl.get();}
// == 2. 线程池正在运行,且失常增加工作
if (isRunning(c) && workQueue.offer(command)) {int recheck = ctl.get();
// -- 2.1 线程池处于非运行状态,且工作能从队列中移除:则执行回绝策略
if (! isRunning(recheck) && remove(command))
reject(command);
// -- 2.2 无工作线程,间接创立无工作线程
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
// == 3. 最大线程创立失败:则执行回绝策略
else if (!addWorker(command, false))
reject(command);
}
新增线程做了哪些操作?
private boolean addWorker(Runnable firstTask,
// -- true:减少外围线程数
// -- false:减少最大线程数
boolean core) {
// == 1. 断定是否容许新增线程,如果容许则减少线程计数
retry:
for (;;) {int c = ctl.get();
int rs = runStateOf(c);
// 线程池状态断定
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {int wc = workerCountOf(c);
// ## 线程数断定:// 大于线程容许的最大值,或大于线程参数(依据 core,断定外围线程数或最大线程数)// 则返回 false
if (wc >= CAPACITY
|| wc >= (core ? corePoolSize : maximumPoolSize)){return false;}
// ## 减少线程计数,胜利后跳出外层循环
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
}
}
// == 2. 新增线程,并让线程执行工作
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
// ## 2.1 创立 worker,构造函数中创立线程
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
// ## 2.2 加锁,向工作线程汇合中退出新增的线程
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {mainLock.unlock();
}
// 2.2 步骤完结
// ## 2.3 工作开始执行:新增的工作线程执行 start 办法
if (workerAdded) {t.start();
workerStarted = true;
}
}
} finally {if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
工作线程如何工作?
public void run() {runWorker(this);
}
final void runWorker(Worker w) {Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
// ## 循环中
while (task != null
// == 1.take 形式从阻塞队列里获取工作,如果无工作则阻塞
// 未获取到工作,将跳出循环——意味着本线程开释
|| (task = getTask()) != null) {
// -- 加锁执行工作(Worker 继承了 AQS)w.lock();
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
// 工作执行前的函数,需自定义实现
beforeExecute(wt, task);
Throwable thrown = null;
try {
// == 2. 从阻塞队列里获取工作,如果有工作则以后线程执行
task.run();} catch (RuntimeException x) {thrown = x; throw x;} catch (Error x) {thrown = x; throw x;} catch (Throwable x) {thrown = x; throw new Error(x);
} finally {
// 工作执行后的函数,需自定义实现
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();}
}
completedAbruptly = false;
} finally {processWorkerExit(w, completedAbruptly);
}
}
具体的工作获取办法
private Runnable getTask() {boolean timedOut = false; // Did the last poll() time out?
for (;;) {int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// ## 容许外围线程执行工作超时,或者线程数曾经超过了外围线程数(曾经是最大线程开始执行工作)boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
// 工作线程数递加,比方超时获取工作状况
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
// ##
// -- 有超时设置,采纳 `poll+ 超时 ` 的形式从阻塞队列获取工作
// 如:最大线程超时未获取到工作,将返回 null
// -- 无超时设置,采纳 `take` 的形式从阻塞队列获取工作(如果无工作,则阻塞)Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {timedOut = false;}
}
}