数据结构
JDK1.8ConcurrentHashMap 采纳数组 + 单链表 + 红黑树的数据结构,数组和链表存储的是一个个 Node 对象,红黑树存储的是 TreeNode 对象
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
volatile V val;
volatile Node<K,V> next;
}
static final class TreeNode<K,V> extends Node<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next,
TreeNode<K,V> parent) {super(hash, key, val, next);
this.parent = parent;
}
}
罕用办法
应用
源码剖析
次要属性
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认容量
static final int DEFAULT_INITIAL_CAPACITY = 16;
// 数组最大容量
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
// 加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 链表的树化阈值,即链表转成红黑树的阈值,当 Node 链表长度 > 该值时,则将链表转换成红黑树
static final int TREEIFY_THRESHOLD = 8;
// 链表的还原阈值,即红黑树转为链表的阈值,当在扩容时,HashMap 的数据存储地位会从新计算,在从新计算存储地位后,当红黑树内 TreeNode 数量 < 6 时,则将 红黑树转换成链表
static final int UNTREEIFY_THRESHOLD = 6;
// 最小链表树化容量阈值,即 当 Node 数组长度 > 该值时,才容许树形化链表,否则则间接扩容,而不是树形化
static final int MIN_TREEIFY_CAPACITY = 64;
构造方法
public ConcurrentHashMap() {}
public ConcurrentHashMap(int initialCapacity) {if (initialCapacity < 0)
throw new IllegalArgumentException();
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
MAXIMUM_CAPACITY :
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
this.sizeCtl = cap;
}
public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
this.sizeCtl = DEFAULT_CAPACITY;
putAll(m);
}
public ConcurrentHashMap(int initialCapacity, float loadFactor) {this(initialCapacity, loadFactor, 1);
}
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int)size);
this.sizeCtl = cap;
}
put()办法
public V put(K key, V value) {return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode());
int binCount = 0;
// 死循环
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
//1.Node 数组初始化
if (tab == null || (n = tab.length) == 0)
tab = initTable();
//2. 计算 key 寄存 Node 数组中的数组下标,判断这个数组下标 Node 数组上是否有 Node 存在
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
//2.1 若不存在,阐明没有 hash 抵触,则示意以后地位能够写入数据,利用 CAS 尝试写入,失败则自旋保障胜利
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
//3. 以后地位的 hashcode==MOVED==-1,则进行扩容
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
//4. 存在 hash 抵触,利用 synchronized 锁锁住链表或者红黑树的头结点写入数据
V oldVal = null;
synchronized (f) {if (tabAt(tab, i) == f) {
//4.1 以后是 Node 是链表
if (fh >= 0) {
binCount = 1;
// 遍历以该 Node 为头结点的链表, 判断该 key 是否已存在
for (Node<K,V> e = f;; ++binCount) {
K ek;
//// 若该 key 已存在,则用新 value 替换旧 value
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
// 若该 key 不存在,则将 key-value 增加到 Node 数组中, 这里采纳尾插法
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
//4.1 以后是 Node 是红黑树
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
//// 向红黑树插入或更新数据(键值对),遍历红黑树判断该节点的 key 是否与传入 key 雷同,雷同则新 value 笼罩旧 value,不雷同则插入
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
//6. 如果链表中的 Node 节点 >8 则须要转换为红黑树
if (binCount != 0) {if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
sizeCtl 值含意:
-1: 示意正在初始化
-n: 示意正在扩容
0: 示意还未初始化,默认值
大于 0:示意下一次扩容的阈值
initTable()办法
private final Node<K,V>[] initTable() {Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
// 若以后有其余线程正在初始化,则让出 CPU 执行权,而后自旋
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
// 若以后有没有其余线程正在初始化,将 sizeCtl 置为 -1,相当于拿到了锁
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {if ((tab = table) == null || tab.length == 0) {int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
// 初始化数组大小为 16
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
// 下一次扩容的大小,0.75n, 和以前的扩容阀值绝对应
sc = n - (n >>> 2);
}
} finally {sizeCtl = sc;}
break;
}
}
return tab;
}
get()办法
public V get(Object key) {Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
// 计算 key 寄存 Node 数组中的数组下标,判断这个数组下标 Node 数组上是否有 Node 存在
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
1. 在 Node 数组中找 key 相等的 Node
if ((eh = e.hash) == h) {if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
//2. 在红黑树中找 key 相等的 Node
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
//3. 在链表中找 key 相等的 Node
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
论断
1.JDK1.8ConcurrentHashMap 采纳数组 + 单链表 + 红黑树的数据结构,数组和链表存储的是一个个 Node 对象,红黑树存储的是 TreeNode 对象
2. 采纳了 CAS + synchronized 来保障并发安全性
3. 增加 key-value 时会依据 key 值计算出对应的 hash 值,依据 hash 值计算出对应的 Node 数组下标,判断这个数组下标 Node 数组上是否有 Node 存在,若不存在,阐明没有 hash 抵触,则示意以后地位能够写入数据,利用 CAS 尝试写入,失败则自旋保障胜利;若存在阐明有 hash 抵触,利用 synchronized 锁锁住链表或者红黑树的头结点写入数据
ConcurrentHashMap1.8 与 ConcurrentHashMap1.7 的区别:
1.1.7 采纳数组 + 链表,1.8 采纳数据 + 链表 + 红黑树优化了查问速度
2.1.7 采纳 Segment 分段锁,1.8 采纳 CAS + synchronized 升高锁的粒度:JDK1.7 版本锁的粒度是基于 Segment 的,蕴含多个 HashEntry,而 JDK1.8 锁的粒度就是 HashEntry