共计 8077 个字符,预计需要花费 21 分钟才能阅读完成。
1. Table API & SQL 实战使用
-
案例阐明
-
性能阐明
通过 socket 读取数据源,进行单词的统计解决。
-
实现流程
- 初始化 Table 运行环境
-
转换操作解决:
1)以空格进行宰割
2)给每个单词计数累加 1
3)依据单词进行分组解决
4)求和统计
5)输入打印数据
- 执行工作
-
-
FlinkTable API 形式实现
StreamTableApiApplication,代码实现:
// 获取流解决的运行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useOldPlanner().inStreamingMode().build(); // 获取 Table 的运行环境 StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env, environmentSettings); // 接入数据源 DataStreamSource<String> lines = env.socketTextStream("10.10.20.15", 9922); // 对字符串进行分词压平 SingleOutputStreamOperator<String> words = lines.flatMap(new FlatMapFunction<String, String>() { @Override public void flatMap(String line, Collector<String> out) throws Exception {Arrays.stream(line.split(" ")).forEach(out::collect); } }); // 将 DataStream 转换成 Table 对象,字段名默认的是 f0,给定字段名是 word Table table = tabEnv.fromDataStream(words, "word"); // 依照单词进行分组聚合操作 Table resultTable = table.groupBy("word").select("word, sum(1L) as counts"); // 在流解决中,数据会源源不断的产生,须要累加解决,只能采纳用 toRestractStream // DataStream<WordCount> wordCountDataStream = tabEnv.toAppendStream(resultTable, WordCount.class); // wordCountDataStream.printToErr("toAppendStream>>>"); DataStream<Tuple2<Boolean, WordCount>> wordCountDataStream = tabEnv.toRetractStream(resultTable, WordCount.class); wordCountDataStream.printToErr("toRetractStream>>>"); env.execute();
测试验证:
开启 socket 输出,输出字符串:
[root@flink1 flink-1.11.2]# nc -lk 9922
-
FlinkTable SQL 形式实现
代码实现:
StreamTableSqlApplication 实现类:
// 获取流解决的运行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useOldPlanner().inStreamingMode().build(); // 获取 Table 的运行环境 StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env, environmentSettings); // 接入数据源 DataStreamSource<String> lines = env.socketTextStream("10.10.20.15", 9922); // 对字符串进行分词压平 SingleOutputStreamOperator<String> words = lines.flatMap(new FlatMapFunction<String, String>() { @Override public void flatMap(String line, Collector<String> out) throws Exception {Arrays.stream(line.split(" ")).forEach(out::collect); } }); // 将 DataStream 转换成 Table 对象,字段名默认的是 f0,给定字段名是 word tabEnv.registerDataStream("t_wordcount", words, "word"); // 依照单词进行分组聚合操作 Table resultTable = tabEnv.sqlQuery("select word,count(1) as counts from t_wordcount group by word"); DataStream<Tuple2<Boolean, WordCount>> wordCountDataStream = tabEnv.toRetractStream(resultTable, WordCount.class); wordCountDataStream.printToErr("toRetractStream>>>"); env.execute();
2. Flink SQL 滚动窗口实战
-
Flink SQL 窗口阐明
Flink SQL 反对的窗口聚合次要是两种:Window 聚合和 Over 聚合。这里次要介绍 Window 聚合。Window 聚合反对两种工夫属性定义窗口:Event Time 和 Processing Time。每种工夫属性类型反对三种窗口类型: 滚动窗口(TUMBLE)、滑动窗口(HOP)和会话窗口(SESSION)。
-
案例阐明
统计在过来的 1 分钟内有多少用户点击了某个的网页,能够通过定义一个窗口来收集最近 1 分钟内的数据,并对这个窗口内的数据进行计算。
测试数据:
| 用户名 | 拜访地址 | 拜访工夫 |
| —— | ——————— | ——————– |
| 张三 | http://taobao.com/xxx | 2021-05-10 10:00:00 |
| 张三 | http://taobao.com/xxx | 2021-05-10 10:00:10 |
| 张三 | http://taobao.com/xxx | 2021-05-10 10:00:49 |
| 张三 | http://taobao.com/xxx | 2021-05-10 10:01:05 |
| 张三 | http://taobao.com/xxx | 2021-05-10 10:01:58 |
| 李四 | http://taobao.com/xxx | 2021-05-10 10:02:10 |
-
滚动窗口使用
滚动窗口(Tumbling windows)要用 Tumble 类来定义,另外还有三个办法:
- over:定义窗口长度
- on:用来分组(按工夫距离)或者排序(按行数)的工夫字段
- as:别名,必须呈现在前面的 groupBy 中
实现步骤:
- 初始化流运行环境
- 在流模式下应用 blink planner
- 创立用户点击事件数据
- 将源数据写入临时文件并获取绝对路径
- 创立表载入用户点击事件数据
- 对表运行 SQL 查问,并将后果作为新表检索
- Table 转换成 DataStream
- 执行工作
TumbleUserClickApplication,实现代码:
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build(); StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env, environmentSettings); // 将源数据写入临时文件并获取绝对路径 String contents = "张三,http://taobao.com/xxx,2021-05-10 10:00:00\n" + "张三,http://taobao.com/xxx,2021-05-10 10:00:10\n" + "张三,http://taobao.com/xxx,2021-05-10 10:00:49\n" + "张三,http://taobao.com/xxx,2021-05-10 10:01:05\n" + "张三,http://taobao.com/xxx,2021-05-10 10:01:58\n" + "张三,http://taobao.com/xxx,2021-05-10 10:02:10\n"; String path = FileUtil.createTempFile(contents); String ddl = "CREATE TABLE user_clicks (\n" + "username varchar,\n" + "click_url varchar,\n" + "ts TIMESTAMP(3),\n" + "WATERMARK FOR ts AS ts - INTERVAL'2'SECOND\n" + ") WITH (\n" + "'connector.type' = 'filesystem',\n"+" 'connector.path' = '"+ path +"',\n"+" 'format.type' = 'csv'\n"+")"; tabEnv.sqlUpdate(ddl); // 对表数据进行 sql 查问,并将后果作为新表进行查问 String query = "SELECT\n" + "TUMBLE_START(ts, INTERVAL'1'MINUTE),\n" + "TUMBLE_END(ts, INTERVAL'1'MINUTE),\n" + "username,\n" + "COUNT(click_url)\n" + "FROM user_clicks\n" + "GROUP BY TUMBLE(ts, INTERVAL'1'MINUTE), username"; Table result = tabEnv.sqlQuery(query); tabEnv.toAppendStream(result, Row.class).print(); env.execute();
以 1 分钟作为工夫滚动窗口,水印提早 2 秒。
输入后果:
4> 2021-10-10T10:00,2021-10-10T10:01, 张三,3
4> 2021-10-10T10:01,2021-10-10T10:02, 张三,2
4> 2021-10-10T10:02,2021-10-10T10:03, 张三,1
3. Flink SQL 滑动窗口实战
-
实现步骤
- 初始化流运行环境
- 在流模式下应用 blink planner
- 创立用户点击事件数据
- 将源数据写入临时文件并获取绝对路径
- 创立表载入用户点击事件数据
- 对表运行 SQL 查问,并将后果作为新表检索
- Table 转换成 DataStream
- 执行工作
-
实现代码
代码 HopUserClickApplication:
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build(); StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env, environmentSettings); // 将源数据写入临时文件并获取绝对路径 String contents = "张三,http://taobao.com/xxx,2020-10-10 10:00:00\n" + "张三,http://taobao.com/xxx,2020-10-10 10:00:10\n" + "张三,http://taobao.com/xxx,2020-10-10 10:00:49\n" + "张三,http://taobao.com/xxx,2020-10-10 10:01:05\n" + "张三,http://taobao.com/xxx,2020-10-10 10:01:58\n" + "张三,http://taobao.com/xxx,2020-10-10 10:02:10\n"; String path = FileUtil.createTempFile(contents); String ddl = "CREATE TABLE user_clicks (\n" + "username varchar,\n" + "click_url varchar,\n" + "ts TIMESTAMP(3),\n" + "WATERMARK FOR ts AS ts - INTERVAL'2'SECOND\n" + ") WITH (\n" + "'connector.type' = 'filesystem',\n"+" 'connector.path' = '"+ path +"',\n"+" 'format.type' = 'csv'\n"+")"; tabEnv.sqlUpdate(ddl); // 对表数据进行 sql 查问,并将后果作为新表进行查问,每隔 30 秒,统计一次过来 1 分钟的数据 String query = "SELECT\n" + "HOP_START(ts, INTERVAL'30'SECOND, INTERVAL'1'MINUTE),\n" + "HOP_END(ts, INTERVAL'30'SECOND, INTERVAL'1'MINUTE),\n" + "username,\n" + "COUNT(click_url)\n" + "FROM user_clicks\n" + "GROUP BY HOP (ts, INTERVAL'30'SECOND, INTERVAL'1'MINUTE), username"; Table result = tabEnv.sqlQuery(query); tabEnv.toAppendStream(result, Row.class).print(); env.execute();
每隔 30 秒,统计一次过来 1 分钟的用户点击数量。
输入后果:
4> 2021-05-10T09:59:30,2021-05-10T10:00:30, 张三,2
4> 2021-05-10T10:00,2021-05-10T10:01, 张三,3
4> 2021-05-10T10:00:30,2021-05-10T10:01:30, 张三,2
4> 2021-05-10T10:01,2021-05-10T10:02, 张三,2
4> 2021-05-10T10:01:30,2021-05-10T10:02:30, 张三,2
4> 2021-05-10T10:02,2021-05-10T10:03, 张三,1
4. Flink SQL 会话窗口实战
-
实现步骤
- 初始化流运行环境
- 在流模式下应用 blink planner
- 创立用户点击事件数据
- 将源数据写入临时文件并获取绝对路径
- 创立表载入用户点击事件数据
- 对表运行 SQL 查问,并将后果作为新表检索
- Table 转换成 DataStream
- 执行工作
-
代码实现:
代码:SessionUserClickApplication
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build(); StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env, environmentSettings); // 将源数据写入临时文件并获取绝对路径 String contents = "张三,http://taobao.com/xxx,2021-05-10 10:00:00\n" + "张三,http://taobao.com/xxx,2021-05-10 10:00:10\n" + "张三,http://taobao.com/xxx,2021-05-10 10:00:49\n" + "张三,http://taobao.com/xxx,2021-05-10 10:01:05\n" + "张三,http://taobao.com/xxx,2021-05-10 10:01:58\n" + "张三,http://taobao.com/xxx,2021-05-10 10:02:10\n"; String path = FileUtil.createTempFile(contents); String ddl = "CREATE TABLE user_clicks (\n" + "username varchar,\n" + "click_url varchar,\n" + "ts TIMESTAMP(3),\n" + "WATERMARK FOR ts AS ts - INTERVAL'2'SECOND\n" + ") WITH (\n" + "'connector.type' = 'filesystem',\n"+" 'connector.path' = '"+ path +"',\n"+" 'format.type' = 'csv'\n"+")"; tabEnv.sqlUpdate(ddl); // 对表数据进行 sql 查问,并将后果作为新表进行查问,每隔 30 秒统计一次数据 String query = "SELECT\n" + "SESSION_START(ts, INTERVAL'30'SECOND),\n" + "SESSION_END(ts, INTERVAL'30'SECOND),\n" + "username,\n" + "COUNT(click_url)\n" + "FROM user_clicks\n" + "GROUP BY SESSION (ts, INTERVAL'30'SECOND), username"; Table result = tabEnv.sqlQuery(query); tabEnv.toAppendStream(result, Row.class).print(); env.execute();
每隔 30 秒统计一次用户点击数据.
输入后果:
4> 2021-05-10T10:00,2021-05-10T10:00:40, 张三,2
4> 2021-05-10T10:00:49,2021-05-10T10:01:35, 张三,2
4> 2021-05-10T10:01:58,2021-05-10T10:02:40, 张三,2
本文由 mirson 创作分享,如需进一步交换,请加 QQ 群:19310171 或拜访 www.softart.cn