关于java:Fllink实时计算运用八Flink-大数据实战案例一

45次阅读

共计 11633 个字符,预计需要花费 30 分钟才能阅读完成。

1. Flink 大数据实时处理设计方案

整套计划通过 Canal + Kafka 连接器 + Protobuf,实现数据的同步接入,由 Flink 服务负责对各类业务数据的实时统计解决。

2. 热销商品的统计解决

  • 性能

    实现对热销商品的统计,统计周期为一天,每 3 秒刷新一次数据。

  • 外围代码

    主逻辑实现:

        /**
         * 执行 Flink 工作解决
         * @throws Exception
         */
        private void executeFlinkTask() throws Exception {
    
            // 1. 创立运行环境
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
            // 2. 设置 kafka 服务连贯信息
            Properties properties = new Properties();
            properties.setProperty("bootstrap.servers", "10.10.20.132:9092");
            properties.setProperty("group.id", "fink_group");
    
            // 3. 创立 Kafka 生产端
            FlinkKafkaConsumer kafkaProducer = new FlinkKafkaConsumer(
                    "order_binlog",                  // 指标 topic
                    new SimpleStringSchema(),   // 序列化 配置
                    properties);
    
            // 调试,从新从最早记录生产
            kafkaProducer.setStartFromEarliest();     // 尽可能从最早的记录开始
            env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
            env.setParallelism(1);
    
            // 4. 读取 Kafka 数据源
            DataStreamSource<String> socketStr = env.addSource(kafkaProducer);
    
            // 5. 数据过滤转换解决
            socketStr.filter(new FilterFunction<String>() {
                @Override
                public boolean filter(String value) throws Exception {JsonObject jsonObject = GsonConvertUtil.getSingleton().getJsonObject(value);
                    String isDDL = jsonObject.get("isDdl").getAsString();
                    String type = jsonObject.get("type").getAsString();
                    // 过滤条件:非 DDL 操作,并且是新增的数据
                    return isDDL.equalsIgnoreCase("false") && "INSERT".equalsIgnoreCase(type);
              }
            }).flatMap(new FlatMapFunction<String, Order>() {
              @Override
                public void flatMap(String value, Collector<Order> out) throws Exception {
                    // 获取 JSON 中的 data 数据
                    JsonArray dataArray = GsonConvertUtil.getSingleton().getJsonObject(value).getAsJsonArray("data");
                    // 将 data 数据转换为 java 对象
                    for(int i =0; i< dataArray.size(); i++) {JsonObject jsonObject = dataArray.get(i).getAsJsonObject();
                        Order order = GsonConvertUtil.getSingleton().cvtJson2Obj(jsonObject, Order.class);
                        System.out.println("order =>" + order);
                        out.collect(order);
                    }
                }
            })
            .assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<Order>(Time.seconds(0)) {
                @Override
                public long extractTimestamp(Order element) {return element.getExecTime();
                }
            })
            .keyBy(Order::getGoodsId)
            .timeWindow(Time.hours(24), Time.seconds(3))
            .aggregate(new TotalAmount(), new AmountWindow())
            .keyBy(HotOrder::getTimeWindow)
            .process(new TopNHotOrder());
    
            // 6. 执行工作
            env.execute("job");
        }

热销商品的金额累加解决:

   /**
     * 商品金额累加器
     */
    private static class TotalAmount implements AggregateFunction<Order, Order, Order> {
        @Override
        public Order createAccumulator() {Order order = new Order();
            order.setTotalAmount(0l);
            return order;
        }

        /**
         * 累加统计商品销售总金额
         * @param value
         * @param accumulator
         * @return
         */
        @Override
        public Order add(Order value, Order accumulator) {accumulator.setGoodsId(value.getGoodsId());
            accumulator.setGoodsName((value.getGoodsName()));
            accumulator.setTotalAmount(accumulator.getTotalAmount() + (value.getExecPrice() * value.getExecVolume()));
            return accumulator;
        }

        @Override
        public Order getResult(Order accumulator) {return accumulator;}

        @Override
        public Order merge(Order a, Order b) {return null;}
    }

热销商品的数据转换解决,用于统计:

    /**
     * 热销商品,在工夫窗口内,对象数据的转换解决
     */
    private static class AmountWindow implements WindowFunction<Order, HotOrder, Long, TimeWindow> {

        @Override
        public void apply(Long goodsId, TimeWindow window, Iterable<Order> input, Collector<HotOrder> out) throws Exception {Order order = input.iterator().next();
            out.collect(new HotOrder(goodsId, order.getGoodsName(), order.getTotalAmount(), window.getEnd()));
        }
    }

热销商品的统计排行解决逻辑:

    /**
     * 热销商品的统计排行实现
     */
    private class TopNHotOrder extends KeyedProcessFunction<Long, HotOrder, String> {

        private ListState<HotOrder> orderState;

        @Override
        public void processElement(HotOrder value, Context ctx, Collector<String> out) throws Exception {
            // 将数据退出到状态列表外面
            orderState.add(value);
            // 注册定时器
            ctx.timerService().registerEventTimeTimer(value.getTimeWindow());
        }

        @Override
        public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {List<HotOrder> orderList = new ArrayList<>();
            for(HotOrder order : orderState.get()){orderList.add(order);
            }
            // 依照成交总金额,倒序排列
            orderList.sort(Comparator.comparing(HotOrder::getTotalAmount).reversed());
            orderState.clear();
            // 将数据写入至 ES
            HotOrderRepository hotOrderRepository = (HotOrderRepository) ApplicationContextUtil.getBean("hotOrderRepository");
            StringBuffer strBuf = new StringBuffer();
            for(HotOrder order: orderList) {order.setId(order.getGoodsId());
                order.setCreateDate(new Date(order.getTimeWindow()));
                hotOrderRepository.save(order);
                strBuf.append(order).append("\n");
                System.out.println("result =>" + order);
            }
            out.collect(strBuf.toString());
        }

        @Override
        public void open(Configuration parameters) throws Exception {super.open(parameters);
            orderState = getRuntimeContext().getListState(new ListStateDescriptor<HotOrder>("hot-order", HotOrder.class));

        }
    }

3. 区域热销商品统计解决 (多维度条件)

  • 性能

    性能:依据不同区域(比方省份、城市),实现对热销商品的统计,统计周期为一天,每 3 秒刷新一次数据。

  • 外围代码

    主逻辑代码:

        /**
         * 执行 Flink 工作解决
         * @throws Exception
         */
        private void executeFlinkTask() throws Exception {
    
            // 1. 创立运行环境
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
            // 2. 设置 kafka 服务连贯信息
            Properties properties = new Properties();
            properties.setProperty("bootstrap.servers", "10.10.20.132:9092");
            properties.setProperty("group.id", "fink_group");
    
            // 3. 创立订单的 Kafka 生产端
            FlinkKafkaConsumer orderKafkaProducer = new FlinkKafkaConsumer(
                    "order_binlog",                  // 指标 topic
                    new SimpleStringSchema(),   // 序列化 配置
                    properties);
    
            // 调试,从新从最早记录生产
            orderKafkaProducer.setStartFromEarliest();     // 尽可能从最早的记录开始
            env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
            env.setParallelism(1);
    
            // 4. 创立地址信息的 kafka 生产端
            FlinkKafkaConsumer addressKafkaProducer = new FlinkKafkaConsumer(
                    "orderAddress_binlog",                  // 指标 topic
                    new SimpleStringSchema(),   // 序列化 配置
                    properties);
    
            // 调试,从新从最早记录生产
            addressKafkaProducer.setStartFromEarliest();     // 尽可能从最早的记录开始
    
            // 5. 读取 Kafka 数据源 ( 订单数据源和地址数据源)DataStreamSource<String> orderStream = env.addSource(orderKafkaProducer);
            DataStreamSource<String> addressStream = env.addSource(addressKafkaProducer);
    
            // 6. 数据过滤转换解决(订单数据)DataStream<Order> orderDataStream = orderStream.filter(new FilterFunction<String>() {
                @Override
                public boolean filter(String value) throws Exception {JsonObject jsonObject = GsonConvertUtil.getSingleton().getJsonObject(value);
                    String isDDL = jsonObject.get("isDdl").getAsString();
                    String type = jsonObject.get("type").getAsString();
                    // 过滤条件:非 DDL 操作,并且是新增的数据
                    return isDDL.equalsIgnoreCase("false") && "INSERT".equalsIgnoreCase(type);
                }
            }).flatMap(new FlatMapFunction<String, Order>() {
                @Override
                public void flatMap(String value, Collector<Order> out) throws Exception {
                    // 获取 JSON 中的 data 数据
                    JsonArray dataArray = GsonConvertUtil.getSingleton().getJsonObject(value).getAsJsonArray("data");
                    // 将 data 数据转换为 java 对象
                    for(int i =0; i< dataArray.size(); i++) {JsonObject jsonObject = dataArray.get(i).getAsJsonObject();
                        Order order = GsonConvertUtil.getSingleton().cvtJson2Obj(jsonObject, Order.class);
                        System.out.println("order =>" + order);
                        out.collect(order);
                    }
                }
            })
            .assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<Order>(Time.seconds(0)) {
                @Override
                public long extractTimestamp(Order element) {return element.getExecTime();
                }
            });
    
            // 7. 过滤转换地址数据源
            DataStream<OrderAddress> orderAddressDataStream = addressStream.filter(new FilterFunction<String>() {
                @Override
                public boolean filter(String value) throws Exception {JsonObject jsonObject = GsonConvertUtil.getSingleton().getJsonObject(value);
                    String isDDL = jsonObject.get("isDdl").getAsString();
                    String type = jsonObject.get("type").getAsString();
                    // 过滤条件:非 DDL 操作,并且是新增的数据
                    return isDDL.equalsIgnoreCase("false") && "INSERT".equalsIgnoreCase(type);
                }
            }).flatMap(new FlatMapFunction<String, OrderAddress>() {
                @Override
                public void flatMap(String value, Collector<OrderAddress> out) throws Exception {
                    // 获取 JSON 中的 data 数据
                    JsonArray dataArray = GsonConvertUtil.getSingleton().getJsonObject(value).getAsJsonArray("data");
                    // 将 data 数据转换为 java 对象
                    for(int i =0; i< dataArray.size(); i++) {JsonObject jsonObject = dataArray.get(i).getAsJsonObject();
                        OrderAddress orderAddress = GsonConvertUtil.getSingleton().cvtJson2Obj(jsonObject, OrderAddress.class);
                        System.out.println("orderAddress =>" + orderAddress);
                        out.collect(orderAddress);
                    }
                }
            })
            .assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<OrderAddress>(Time.seconds(0)) {
                @Override
                public long extractTimestamp(OrderAddress element) {return element.getExecTime();
                }
            });
    
            // 8. 订单数据流和地址数据流的 join 解决
            orderDataStream.join(orderAddressDataStream).where(new KeySelector<Order, Object>() {
                @Override
                public Object getKey(Order value) throws Exception {return value.getId();
                }
            }).equalTo(new KeySelector<OrderAddress, Object>() {
                @Override
                public Object getKey(OrderAddress value) throws Exception {return value.getOrderId();
                }
            })
            // 这里的工夫,相比上面的工夫窗滑动值 slide 快一些
            .window(TumblingEventTimeWindows.of(Time.seconds(2)))
            .apply(new JoinFunction<Order, OrderAddress, JoinOrderAddress>() {
    
                @Override
                public JoinOrderAddress join(Order first, OrderAddress second) throws Exception {return JoinOrderAddress.build(first, second);
                }
            }).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<JoinOrderAddress>(Time.seconds(0)) {
                @Override
                public long extractTimestamp(JoinOrderAddress element) {return element.getExecTime();
                }
            })
            // 9. 依据省份和商品 ID 进行数据分组
            .keyBy(new KeySelector<JoinOrderAddress, Tuple2<String, Long>>() {
                @Override
                public Tuple2<String, Long> getKey(JoinOrderAddress value) throws Exception {return Tuple2.of(value.getProvince(), value.getGoodsId());
                }
            })
            .timeWindow(Time.hours(24), Time.seconds(3))
            .aggregate(new TotalAmount(), new AmountWindow())
            .keyBy(HotDimensionOrder::getTimeWindow)
            .process(new TopNDimensionOrder());
    
            // 10. 执行工作
            env.execute("job");
        }

商品金额累加器:

  /**
   * 商品金额累加器
   */
  private static class TotalAmount implements AggregateFunction<JoinOrderAddress, JoinOrderAddress, JoinOrderAddress> {
      @Override
      public JoinOrderAddress createAccumulator() {JoinOrderAddress order = new JoinOrderAddress();
          order.setTotalAmount(0l);
          return order;
      }
  
      /**
       * 商品销售总金额累加解决
       * @param value
       * @param accumulator
       * @return
       */
      @Override
      public JoinOrderAddress add(JoinOrderAddress value, JoinOrderAddress accumulator) {accumulator.setGoodsId(value.getGoodsId());
          accumulator.setGoodsName((value.getGoodsName()));
          accumulator.setProvince(value.getProvince());
          accumulator.setCity(value.getCity());
          accumulator.setTotalAmount(accumulator.getTotalAmount() + (value.getExecPrice() * value.getExecVolume()));
          return accumulator;
      }
  
      @Override
      public JoinOrderAddress getResult(JoinOrderAddress accumulator) {return accumulator;}  
      @Override
      public JoinOrderAddress merge(JoinOrderAddress a, JoinOrderAddress b) {return null;}
  }

热销商品的数据转换解决:

  private static class AmountWindow implements WindowFunction<JoinOrderAddress, HotDimensionOrder, Tuple2<String, Long>, TimeWindow> {
  
      @Override
      public void apply(Tuple2<String, Long> goodsId, TimeWindow window, Iterable<JoinOrderAddress> input, Collector<HotDimensionOrder> out) throws Exception {JoinOrderAddress order = input.iterator().next();
          out.collect(new HotDimensionOrder(order, window.getEnd()));
      }
  }

依据不同区域的热销商品,实现统计排行:

  private class TopNDimensionOrder extends KeyedProcessFunction<Long, HotDimensionOrder, String> {
  
      private ListState<HotDimensionOrder> orderState;
  
      @Override
      public void processElement(HotDimensionOrder value, Context ctx, Collector<String> out) throws Exception {
          // 将数据退出到状态列表外面
          orderState.add(value);
          // 注册定时器
          ctx.timerService().registerEventTimeTimer(value.getTimeWindow());
      }
  
      @Override
      public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {List<HotDimensionOrder> orderList = new ArrayList<>();
          for(HotDimensionOrder order : orderState.get()){orderList.add(order);
          }
          // 依照省份和商品的成交总金额,倒序排列
          orderList.sort(Comparator.comparing(HotDimensionOrder::getProvince).thenComparing(HotDimensionOrder::getTotalAmount, Comparator.reverseOrder()));
          orderState.clear();
          // 将数据写入至 ES
          HotDimensionRepository  hotDimensionRepository = (HotDimensionRepository) ApplicationContextUtil.getBean("hotDimensionRepository");
          StringBuffer strBuf = new StringBuffer();
          for(HotDimensionOrder order: orderList) {order.setId(order.getProvince() + order.getGoodsId());
              order.setCreateDate(new Date(order.getTimeWindow()));
              hotDimensionRepository.save(order);
              strBuf.append(order).append("\n");
              System.out.println("result =>" + order);
          }
          out.collect(strBuf.toString());
      }  
      @Override
      public void open(Configuration parameters) throws Exception {super.open(parameters);
          orderState = getRuntimeContext().getListState(new ListStateDescriptor<HotDimensionOrder>("hot-dimension", HotDimensionOrder.class));
  
      }
  }

本文由 mirson 创作分享,如需进一步交换,请加 QQ 群:19310171 或拜访 www.softart.cn

正文完
 0