关于java:8-种最坑的SQL错误用法你有没有踩过

4次阅读

共计 10599 个字符,预计需要花费 27 分钟才能阅读完成。

sql 语句的执行程序:

FROM
<left_table>

ON
<join_condition>

<join_type>
 JOIN
<right_table>

WHERE
<where_condition>

GROUP BY
<group_by_list>

HAVING
<having_condition>

SELECT

DISTINCT
<select_list>

ORDER BY
<order_by_condition>

LIMIT
<limit_number>

1、LIMIT 语句

分页查问是最罕用的场景之一,但也通常也是最容易出问题的中央。比方对于上面简略的语句,个别 DBA 想到的方法是在 type, name, create_time 字段上加组合索引。这样条件排序都能无效的利用到索引,性能迅速晋升。

SELECT *
FROM   operation
WHERE  type = 'SQLStats'
       AND name = 'SlowLog'
ORDER  BY create_time
LIMIT  1000, 10;

好吧,可能 90% 以上的 DBA 解决该问题就到此为止。但当 LIMIT 子句变成“LIMIT 1000000,10”时,程序员依然会埋怨:我只取 10 条记录为什么还是慢?

要晓得数据库也并不知道第 1000000 条记录从什么中央开始,即便有索引也须要从头计算一次。呈现这种性能问题,少数情景下是程序员偷懒了。

在前端数据浏览翻页,或者大数据分批导出等场景下,是能够将上一页的最大值当成参数作为查问条件的。SQL 从新设计如下:

SELECT   *
FROM     operation
WHERE    type = 'SQLStats'
AND      name = 'SlowLog'
AND      create_time > '2017-03-16 14:00:00'
ORDER BY create_time limit 10;

在新设计下查问工夫根本固定,不会随着数据量的增长而发生变化。

2、隐式转换

SQL 语句中查问变量和字段定义类型不匹配是另一个常见的谬误。比方上面的语句:

mysql> explain extended SELECT *
     > FROM   my_balance b
     > WHERE  b.bpn = 14000000123
     >       AND b.isverified IS NULL ;
mysql> show warnings;
| Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'

其中字段 bpn 的定义为 varchar(20),MySQL 的策略是将字符串转换为数字之后再比拟。函数作用于表字段,索引生效。

上述情况可能是应用程序框架主动填入的参数,而不是程序员的原意。当初利用框架很多很繁冗,使用方便的同时也小心它可能给本人挖坑。

3、关联更新、删除

尽管 MySQL5.6 引入了物化个性,但须要特地留神它目前仅仅针对查问语句的优化。对于更新或删除须要手工重写成 JOIN。

比方上面 UPDATE 语句,MySQL 理论执行的是循环 / 嵌套子查问(DEPENDENT SUBQUERY),其执行工夫可想而知。

UPDATE operation o
SET    status = 'applying'
WHERE  o.id IN (SELECT id
                FROM   (SELECT o.id,
                               o.status
                        FROM   operation o
                        WHERE  o.group = 123
                               AND o.status NOT IN ('done')
                        ORDER  BY o.parent,
                                  o.id
                        LIMIT  1) t);

执行打算:

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| id | select_type        | table | type  | possible_keys | key     | key_len | ref   | rows | Extra                                               |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| 1  | PRIMARY            | o     | index |               | PRIMARY | 8       |       | 24   | Using where; Using temporary                        |
| 2  | DEPENDENT SUBQUERY |       |       |               |         |         |       |      | Impossible WHERE noticed after reading const tables |
| 3  | DERIVED            | o     | ref   | idx_2,idx_5   | idx_5   | 8       | const | 1    | Using where; Using filesort                         |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

重写为 JOIN 之后,子查问的抉择模式从 DEPENDENT SUBQUERY 变成 DERIVED,执行速度大大放慢,从 7 秒升高到 2 毫秒。

UPDATE operation o
       JOIN  (SELECT o.id,
                            o.status
                     FROM   operation o
                     WHERE  o.group = 123
                            AND o.status NOT IN ('done')
                     ORDER  BY o.parent,
                               o.id
                     LIMIT  1) t
         ON o.id = t.id
SET    status = 'applying'

执行打算简化为:

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| id | select_type | table | type | possible_keys | key   | key_len | ref   | rows | Extra                                               |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| 1  | PRIMARY     |       |      |               |       |         |       |      | Impossible WHERE noticed after reading const tables |
| 2  | DERIVED     | o     | ref  | idx_2,idx_5   | idx_5 | 8       | const | 1    | Using where; Using filesort                         |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+

4、混合排序

MySQL 不能利用索引进行混合排序。但在某些场景,还是有机会应用非凡办法晋升性能的。

SELECT *
FROM   my_order o
       INNER JOIN my_appraise a ON a.orderid = o.id
ORDER  BY a.is_reply ASC,
          a.appraise_time DESC
LIMIT  0, 20

执行打算显示为全表扫描:

+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
| id | select_type | table | type   | possible_keys     | key     | key_len | ref      | rows    | Extra
+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
|  1 | SIMPLE      | a     | ALL    | idx_orderid | NULL    | NULL    | NULL    | 1967647 | Using filesort |
|  1 | SIMPLE      | o     | eq_ref | PRIMARY     | PRIMARY | 122     | a.orderid |       1 | NULL           |
+----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+

因为 is_reply 只有 0 和 1 两种状态,咱们依照上面的办法重写后,执行工夫从 1.58 秒升高到 2 毫秒。

SELECT *
FROM   ((SELECT *
         FROM   my_order o
                INNER JOIN my_appraise a
                        ON a.orderid = o.id
                           AND is_reply = 0
         ORDER  BY appraise_time DESC
         LIMIT  0, 20)
        UNION ALL
        (SELECT *
         FROM   my_order o
                INNER JOIN my_appraise a
                        ON a.orderid = o.id
                           AND is_reply = 1
         ORDER  BY appraise_time DESC
         LIMIT  0, 20)) t
ORDER  BY  is_reply ASC,
          appraisetime DESC
LIMIT  20;

5、EXISTS 语句

MySQL 看待 EXISTS 子句时,依然采纳嵌套子查问的执行形式。如上面的 SQL 语句:SELECT *
FROM   my_neighbor n
       LEFT JOIN my_neighbor_apply sra
              ON n.id = sra.neighbor_id
                 AND sra.user_id = 'xxx'
WHERE  n.topic_status < 4
       AND EXISTS(SELECT 1
                  FROM   message_info m
                  WHERE  n.id = m.neighbor_id
                         AND m.inuser = 'xxx')
       AND n.topic_type <> 5

执行打算为:

+----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+
| id | select_type        | table | type | possible_keys     | key   | key_len | ref   | rows    | Extra   |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+
|  1 | PRIMARY            | n     | ALL  |  | NULL     | NULL    | NULL  | 1086041 | Using where                   |
|  1 | PRIMARY            | sra   | ref  |  | idx_user_id | 123     | const |       1 | Using where          |
|  2 | DEPENDENT SUBQUERY | m     | ref  |  | idx_message_info   | 122     | const |       1 | Using index condition; Using where |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+

去掉 exists 更改为 join,可能防止嵌套子查问,将执行工夫从 1.93 秒升高为 1 毫秒。

SELECT *
FROM   my_neighbor n
       INNER JOIN message_info m
               ON n.id = m.neighbor_id
                  AND m.inuser = 'xxx'
       LEFT JOIN my_neighbor_apply sra
              ON n.id = sra.neighbor_id
                 AND sra.user_id = 'xxx'
WHERE  n.topic_status < 4
       AND n.topic_type <> 5

新的执行打算:

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
| id | select_type | table | type   | possible_keys     | key       | key_len | ref   | rows | Extra                 |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
|  1 | SIMPLE      | m     | ref    | | idx_message_info   | 122     | const    |    1 | Using index condition |
|  1 | SIMPLE      | n     | eq_ref | | PRIMARY   | 122     | ighbor_id |    1 | Using where      |
|  1 | SIMPLE      | sra   | ref    | | idx_user_id | 123     | const     |    1 | Using where           |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+

6、条件下推

内部查问条件不可能下推到简单的视图或子查问的状况有:

1、聚合子查问;2、含有 LIMIT 的子查问;3、UNION 或 UNION ALL 子查问;4、输入字段中的子查问;

如上面的语句,从执行打算能够看出其条件作用于聚合子查问之后:

SELECT *
FROM   (SELECT target,
               Count(*)
        FROM   operation
        GROUP  BY target) t
WHERE  target = 'rm-xxxx'
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
| id | select_type | table      | type  | possible_keys | key         | key_len | ref   | rows | Extra       |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
|  1 | PRIMARY     | <derived2> | ref   | <auto_key0>   | <auto_key0> | 514     | const |    2 | Using where |
|  2 | DERIVED     | operation  | index | idx_4         | idx_4       | 519     | NULL  |   20 | Using index |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

确定从语义上查问条件能够间接下推后,重写如下:

SELECT target,
       Count(*)
FROM   operation
WHERE  target = 'rm-xxxx'
GROUP  BY target

执行打算变为:

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+

对于 MySQL 内部条件不能下推的具体解释阐明请参考以前文章:MySQL · 性能优化 · 条件下推到物化表 http://mysql.taobao.org/month…

7、提前放大范畴

先上初始 SQL 语句:

SELECT *
FROM   my_order o
       LEFT JOIN my_userinfo u
              ON o.uid = u.uid
       LEFT JOIN my_productinfo p
              ON o.pid = p.pid
WHERE  (o.display = 0)
       AND (o.ostaus = 1)
ORDER  BY o.selltime DESC
LIMIT  0, 15

该 SQL 语句原意是:先做一系列的左连贯,而后排序取前 15 条记录。从执行打算也能够看出,最初一步估算排序记录数为 90 万,工夫耗费为 12 秒。

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
| id | select_type | table | type   | possible_keys | key     | key_len | ref             | rows   | Extra                                              |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
|  1 | SIMPLE      | o     | ALL    | NULL          | NULL    | NULL    | NULL            | 909119 | Using where; Using temporary; Using filesort       |
|  1 | SIMPLE      | u     | eq_ref | PRIMARY       | PRIMARY | 4       | o.uid |      1 | NULL                                               |
|  1 | SIMPLE      | p     | ALL    | PRIMARY       | NULL    | NULL    | NULL            |      6 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

因为最初 WHERE 条件以及排序均针对最左主表,因而能够先对 my_order 排序提前放大数据量再做左连贯。SQL 重写后如下,执行工夫放大为 1 毫秒左右。

SELECT *
FROM (
SELECT *
FROM   my_order o
WHERE  (o.display = 0)
       AND (o.ostaus = 1)
ORDER  BY o.selltime DESC
LIMIT  0, 15
) o
     LEFT JOIN my_userinfo u
              ON o.uid = u.uid
     LEFT JOIN my_productinfo p
              ON o.pid = p.pid
ORDER BY  o.selltime DESC
limit 0, 15

再查看执行打算:子查问物化后(select_type=DERIVED) 参加 JOIN。尽管估算行扫描依然为 90 万,然而利用了索引以及 LIMIT 子句后,理论执行工夫变得很小。

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
| id | select_type | table      | type   | possible_keys | key     | key_len | ref   | rows   | Extra                                              |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
|  1 | PRIMARY     | <derived2> | ALL    | NULL          | NULL    | NULL    | NULL  |     15 | Using temporary; Using filesort                    |
|  1 | PRIMARY     | u          | eq_ref | PRIMARY       | PRIMARY | 4       | o.uid |      1 | NULL                                               |
|  1 | PRIMARY     | p          | ALL    | PRIMARY       | NULL    | NULL    | NULL  |      6 | Using where; Using join buffer (Block Nested Loop) |
|  2 | DERIVED     | o          | index  | NULL          | idx_1   | 5       | NULL  | 909112 | Using where                                        |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+

8、两头后果集下推

再来看上面这个曾经初步优化过的例子 (左连贯中的主表优先作用查问条件):

SELECT    a.*,
          c.allocated
FROM      (
              SELECT   resourceid
              FROM     my_distribute d
                   WHERE    isdelete = 0
                   AND      cusmanagercode = '1234567'
                   ORDER BY salecode limit 20) a
LEFT JOIN
          (SELECT   resourcesid,sum(ifnull(allocation, 0) * 12345) allocated
              FROM     my_resources
                   GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid

那么该语句还存在其它问题吗?不难看出子查问 c 是全表聚合查问,在表数量特地大的状况下会导致整个语句的性能降落。

其实对于子查问 c,左连贯最初后果集只关怀能和主表 resourceid 能匹配的数据。因而咱们能够重写语句如下,执行工夫从原来的 2 秒降落到 2 毫秒。

SELECT    a.*,
          c.allocated
FROM      (
                   SELECT   resourceid
                   FROM     my_distribute d
                   WHERE    isdelete = 0
                   AND      cusmanagercode = '1234567'
                   ORDER BY salecode limit 20) a
LEFT JOIN
          (SELECT   resourcesid,sum(ifnull(allocation, 0) * 12345) allocated
                   FROM     my_resources r,
                            (
                                     SELECT   resourceid
                                     FROM     my_distribute d
                                     WHERE    isdelete = 0
                                     AND      cusmanagercode = '1234567'
                                     ORDER BY salecode limit 20) a
                   WHERE    r.resourcesid = a.resourcesid
                   GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid

然而子查问 a 在咱们的 SQL 语句中呈现了屡次。这种写法不仅存在额定的开销,还使得整个语句显的繁冗。应用 WITH 语句再次重写:

WITH a AS
(
         SELECT   resourceid
         FROM     my_distribute d
         WHERE    isdelete = 0
         AND      cusmanagercode = '1234567'
         ORDER BY salecode limit 20)
SELECT    a.*,
          c.allocated
FROM      a
LEFT JOIN
          (SELECT   resourcesid,sum(ifnull(allocation, 0) * 12345) allocated
                   FROM     my_resources r,
                            a
                   WHERE    r.resourcesid = a.resourcesid
                   GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid

总结

数据库编译器产生执行打算,决定着 SQL 的理论执行形式。然而编译器只是尽力服务,所有数据库的编译器都不是尽如人意的。

上述提到的少数场景,在其它数据库中也存在性能问题。理解数据库编译器的个性,能力避规其短处,写出高性能的 SQL 语句。

程序员在设计数据模型以及编写 SQL 语句时,要把算法的思维或意识带进来。

编写简单 SQL 语句要养成应用 WITH 语句的习惯。简洁且思路清晰的 SQL 语句也能减小数据库的累赘。

起源:yq.aliyun.com/articles/72501

正文完
 0