表情包斗图,作为人生新晋一大乐事,曾经是宽广网友每天必经的聊天互动环节。什么哄堂大笑、满腹槽点、彻底无语……这些万千语言无奈贴切形容的情绪细节,总能被一张看似平平无奇的表情包完满形容,堪称一图胜千言,四两拨千斤!
现在,在表情包斗图进入白热化阶段,人们对表情包的定制化需要日益增多,人人是表情包的搬运工,人人也是后劲热图的创造者!赋予集体制作个性化表情包的能力很有必要。应用 机器学习的图像宰割性能,轻松宰割简单图片背景,让表情包制作简略而高效,让咱们来看看如何将一张图片变成传情达意的表情包吧!
开发筹备
Maven 仓和 SDK 的配置步骤能够参考开发者网站中的利用开发介绍
https://developer.huawei.com/…
配置集成的 SDK 包
图像宰割提供了两种 SDK 集成形式,一种是事后将宰割算法包事后集成在利用中,另一种是在利用装置运行后,再将所需的算法包下载到利用中,能够依据利用的应用场景和所需成果进行抉择。
本文是应用了 Full SDK 的集成计划,在利用的 build.gradle 文件中,dependencies 内增加图像宰割的 SDK 依赖
implementation 'com.huawei.hms:ml-computer-vision-segmentation:2.2.0.300'
implementation 'com.huawei.hms:ml-computer-vision-image-segmentation-body-model:2.2.0.300'
配置 AndroidManifest.xml
关上 main 文件夹中的 AndroidManifest.xml 文件,能够依据场景和应用须要,配置读取和写入手机存储的权限,在 <application> 前增加
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
在 <application> 内增加如下语句,当利用装置后,会自动更新最新的机器学习模型到设施
<meta-data
android:name="com.huawei.hms.ml.DEPENDENCY"
android:value= "imagesuperresolution"/>
开发步骤
配置存储权限申请
手机的存储权限,除了在 Manifest 中申明,还须要在 Activity 中进行动静申请。
在 MainActivity 的 onCreate()办法中,调用 requestPermission 办法,对 WRITE_EXTERNAL_STORAGE 和 READ_EXTERNAL_STORAGE 权限进行申请
protected void onCreate(Bundle savedInstanceState) {
……
requestPermission(Manifest.permission.READ_EXTERNAL_STORAGE);
requestPermission(Manifest.permission.WRITE_EXTERNAL_STORAGE);
……
}
requestPermission 办法的实现如下,首先对权限进行判断,如果未获取权限,则进行申请,如果曾经获取了,则返回
private void requestPermission(String permisssions) {if (Build.VERSION.SDK_INT < Build.VERSION_CODES.M) {return;}
if (ContextCompat.checkSelfPermission(this, permisssions)
!= PackageManager.PERMISSION_GRANTED) {ActivityCompat.requestPermissions(this, new String[]{permisssions}, REQUEST_CODE);
} else {return;}
}
读取相册中的图片
咱们先从相册中选取要进行表情包制作的图片,在 xml 文件中创立一个按钮 chooseImg,点击后调用 selectLocalImage 办法
this.relativeLayoutLoadPhoto = this.findViewById(R.id.chooseImg);
this.relativeLayoutLoadPhoto.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {MainActivity.this.selectLocalImage(StillCutPhotoActivity.this.REQUEST_CHOOSE_ORIGINPIC);
}
});
selectLocalImage 办法的实现如下
private void selectLocalImage(int requestCode) {Intent intent = new Intent(Intent.ACTION_PICK, null);
intent.setDataAndType(MediaStore.Images.Media.EXTERNAL_CONTENT_URI, "image/*");
this.startActivityForResult(intent, requestCode);
}
进行图像宰割制作表情包
再创立一个按钮 cut,点击后调用 createImageTransactor 办法,进行图像宰割分析器的创立
this.relativeLayoutCut = this.findViewById(R.id.cut);
this.relativeLayoutCut.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {if (MainActivity.this.imageUri == null) {Toast.makeText(MainActivity.this.getApplicationContext(), R.string.please_select_picture, Toast.LENGTH_SHORT).show();} else {MainActivity.this.createImageTransactor();
Toast.makeText(MainActivity.this.getApplicationContext(), R.string.cut_success, Toast.LENGTH_SHORT).show();}
}
});
在 createImageTransactor 办法中,咱们首先创立一个图像宰割的分析器,再进行分析器的配置,将其设置为人像宰割模式
private MLImageSegmentationAnalyzer analyzer;
MLImageSegmentationSetting setting = new MLImageSegmentationSetting.Factory().setAnalyzerType(MLImageSegmentationSetting.BODY_SEG).create();
this.analyzer = MLAnalyzerFactory.getInstance().getImageSegmentationAnalyzer(setting);
从相册中选取的文件,通过 imageUri,将其关上为 Bitmap 格局
Pair<Integer, Integer> targetedSize = this.getTargetSize();
int targetWidth = targetedSize.first;
int targetHeight = targetedSize.second;
this.originBitmap = BitmapUtils.loadFromPath(StillCutPhotoActivity.this, this.imageUri, targetWidth, targetHeight);
之后创立 MLFrame,调用 asyncAnalyseFrame 进行异步图像宰割解决
MLFrame mlFrame = new MLFrame.Creator().setBitmap(this.originBitmap).create();
Task<MLImageSegmentation> task = this.analyzer.asyncAnalyseFrame(mlFrame);
图像宰割实现后,对返回的后果进行解决,将去除背景后的图像保留到 processedImage 中
task.addOnSuccessListener(new OnSuccessListener<MLImageSegmentation>() {
@Override
public void onSuccess(MLImageSegmentation mlImageSegmentationResults) {
// Transacting logic for segment success.
if (mlImageSegmentationResults != null) {StillCutPhotoActivity.this.foreground = mlImageSegmentationResults.getForeground();
StillCutPhotoActivity.this.preview.setImageBitmap(StillCutPhotoActivity.this.foreground);
StillCutPhotoActivity.this.processedImage = ((BitmapDrawable) ((ImageView) StillCutPhotoActivity.this.preview).getDrawable()).getBitmap();} else {StillCutPhotoActivity.this.displayFailure();
}
}
}).addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(Exception e) {
// Transacting logic for segment failure.
StillCutPhotoActivity.this.displayFailure();
return;
}
});
保留表情包
最初将解决好的图像转换成 png 格局,存储到零碎相册中
public void saveToAlbum(Bitmap bitmap){
File file = null;
String fileName = System.currentTimeMillis() +".png";
File root = new File(Environment.getExternalStorageDirectory().getAbsoluteFile(), this.context.getPackageName());
File dir = new File(root, "image");
if(dir.mkdirs() || dir.isDirectory()){file = new File(dir, fileName);
}
FileOutputStream os = null;
try {os = new FileOutputStream(file);
bitmap.compress(Bitmap.CompressFormat.PNG, 100, os);
os.flush();} catch (FileNotFoundException e) {Log.e(TAG, e.getMessage());
} catch (IOException e) {Log.e(TAG, e.getMessage());
}finally {
try {if(os != null) {os.close();
}
}catch (IOException e){Log.e(TAG, e.getMessage());
}
}
if(file == null){return;}
if(imageUtilCallBack != null) {
try {imageUtilCallBack.callSavePath(file.getCanonicalPath());
} catch (IOException e) {Log.e(TAG, e.getMessage());
}
}
// Gallery refresh.
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
String path = null;
try {path = file.getCanonicalPath();
} catch (IOException e) {Log.e(TAG, e.getMessage());
}
MediaScannerConnection.scanFile(this.context, new String[]{path}, null,
new MediaScannerConnection.OnScanCompletedListener() {
@Override
public void onScanCompleted(String path, Uri uri) {Intent mediaScanIntent = new Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE);
mediaScanIntent.setData(uri);
ImageUtils.this.context.sendBroadcast(mediaScanIntent);
}
});
} else {String relationDir = file.getParent();
File file1 = new File(relationDir);
this.context.sendBroadcast(new Intent(Intent.ACTION_MEDIA_MOUNTED, Uri.fromFile(file1.getAbsoluteFile())));
}
}
成果示例
编译运行后,能够从相册中抉择想要制作表情包的照片,点击 Cut,ML Kit 会实现之后的人像辨认和图像宰割步骤,将芜杂的背景去除,返回人像的图片,之后点击 Save 即可将其保留为没有背景的表情包。
保留后即可将表情包增加到社交软件中啦,快来试试吧!
理解更多相干内容
拜访华为机器学习图像宰割服务官网
获取华为机器学习服务开发领导文档
华为 HMS Core 官方论坛
华为机器学习开源仓地址:GitHub、Gitee
解决集成问题请到 Stack Overflow
点击关注,第一工夫理解 HMS Core 最新技术~