共计 15631 个字符,预计需要花费 40 分钟才能阅读完成。
前言需要
接下里介绍的是 Java 的设计模式之一:原型模式
当初有一只羊 tom
姓名为: tom, 年龄为:1,色彩为:红色
请编写程序创立和 tom 羊 属性完全相同的 10 只羊
请问你会怎么制作呢?
一、什么是原型模式
原型模式 (Prototype 模式) 是指:用原型实例指定创建对象的品种,并且通过拷贝这些原型,创立新的对象
原型模式是一种创立型设计模式,容许一个对象再创立另外一个可定制的对象,无需晓得如何创立的细节
工作原理是:通过将一个原型对象传给那个要动员创立的对象,这个要动员创立的对象通过申请原型对象拷贝它们本人来施行创立,即对象.clone()
形象的了解:齐天大圣孙悟空插入猴毛,变出其它孙大圣
原理结构图阐明
Prototype : 原型类,申明一个克隆本人的接口
ConcretePrototype: 具体的原型类, 实现一个克隆本人的操作
Client: 让一个原型对象克隆本人,从而创立一个新的对象(属性一样)
二、通过示例阐明状况
咱们依照传统形式解决之前提出的克隆羊问题
class Sheep{ | |
public String name; | |
public int age; | |
public String color; | |
public Sheep(String name, int age, String color) { | |
this.name = name; | |
this.age = age; | |
this.color = color; | |
} | |
public String getName() {return name;} | |
public void setName(String name) {this.name = name;} | |
public int getAge() {return age;} | |
public void setAge(int age) {this.age = age;} | |
public String getColor() {return color;} | |
public void setColor(String color) {this.color = color;} | |
} |
咱们生成一只羊,而后依据这只羊的属性创立十只羊
public static void main(String[] args) { | |
// 传统的办法 | |
Sheep sheep = new Sheep("tom", 1, "红色"); | |
Sheep sheep2 = new Sheep(sheep.getName(), sheep.getAge(), sheep.getColor()); | |
Sheep sheep3 = new Sheep(sheep.getName(), sheep.getAge(), sheep.getColor()); | |
Sheep sheep4 = new Sheep(sheep.getName(), sheep.getAge(), sheep.getColor()); | |
//......... | |
} |
传统的形式的优缺点
- 长处是
比拟好了解,简略易操作
。 - 在
创立新的对象时,总是须要从新获取原始对象的属性
,如果创立的对象比较复杂时,效率较低 - 总是
须要从新初始化对象
,而不是动静地取得对象运行时的状态, 不够灵便
改良的思路剖析
思路:Java 中 Object 类是所有类的根类,Object 类提供了一个 clone()办法
.
该办法能够将一个 Java 对象复制一份,然而须要实现 clone 的 Java 类必须要实现一个接口 Cloneable,该接口示意该类可能复制且具备复制的能力 => 原型模式
class Sheep implements Cloneable { | |
// 省略要害代码.... | |
// 克隆该实例,应用默认的 clone 办法来实现 | |
@Override | |
protected Object clone(){ | |
Sheep sheep = null; | |
try {sheep = (Sheep) super.clone();} catch (CloneNotSupportedException e) {e.printStackTrace(); | |
} | |
return sheep; | |
} | |
} |
那么咱们是应用 demo 看看,与传统模式有何变动呢?
public static void main(String[] args) { | |
// 传统的办法 | |
Sheep sheep = new Sheep("tom", 1, "红色"); | |
Sheep sheep2 = (Sheep)sheep.clone(); | |
Sheep sheep3 = (Sheep)sheep.clone(); | |
Sheep sheep4 = (Sheep)sheep.clone(); | |
//......... | |
} |
咱们在应用原型模式的时候,克隆则就不无需每次 new 一个对象
并且如果 Sheep 办法,如何增加了一个字段属性,也会本人实现初始化
class Sheep implements Cloneable { | |
private String name; | |
private int age; | |
private String color; | |
private String address; | |
public Sheep(String name, int age, String color, String address) { | |
this.name = name; | |
this.age = age; | |
this.color = color; | |
this.address = address; | |
} | |
public String getAddress() {return address;} | |
public void setAddress(String address) {this.address = address;} | |
} |
public static void main(String[] args) { | |
// 传统的办法 | |
Sheep sheep = new Sheep("tom", 1, "红色","内蒙古"); | |
Sheep sheep2 = (Sheep)sheep.clone(); | |
Sheep sheep3 = (Sheep)sheep.clone(); | |
Sheep sheep4 = (Sheep)sheep.clone(); | |
//......... | |
} |
三、Spring 框架源码解析
Spring 中原型 bean 的创立,就是原型模式的利用
咱们应用一个类来举例说明一下
class Monster{ | |
private Integer id = 10; | |
private String nickName = "牛魔王"; | |
private String skill = "芭蕉扇"; | |
public Monster() {System.out.println("monster 创立...."); | |
} | |
public Monster(Integer id, String nickName, String skill) { | |
this.id = id; | |
this.nickName = nickName; | |
this.skill = skill; | |
} | |
public Integer getId() {return id;} | |
public void setId(Integer id) {this.id = id;} | |
public String getNickName() {return nickName;} | |
public void setNickName(String nickName) {this.nickName = nickName;} | |
public String getSkill() {return skill;} | |
public void setSkill(String skill) {this.skill = skill;} | |
} |
同时咱们这里还有一个 bean 的 xml 文件配置
<beans xmlns="http://www.springframework.org/schema/beans" | |
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" | |
xmlns:p="http://www.springframework.org/schema/p" | |
xmlns:context="http://www.springframework.org/schema/context" | |
xmlns:mvc="http://www.springframework.org/schema/mvc" | |
xmlns:util="http://www.springframework.org/schema/util" | |
xmlns:task="http://www.springframework.org/schema/task" | |
xsi:schemaLocation=" | |
http://www.springframework.org/schema/mvc | |
http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd | |
http://www.springframework.org/schema/beans | |
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd | |
http://www.springframework.org/schema/context | |
http://www.springframework.org/schema/context/spring-context-3.0.xsd | |
http://www.springframework.org/schema/util | |
http://www.springframework.org/schema/util/spring-util-3.0.xsd | |
http://www.springframework.org/schema/task | |
http://www.springframework.org/schema/task/spring-task-3.2.xsd"<!-- 咱们这里的 scope="prototype" 即原型模式来创立 --> | |
<bean id="id01" class="com.spring.bean.Monster" scope="prototype"/> | |
</beans> |
接下来咱们应用 demo,测试原型模式下的 bean,获取对象是否相等
public static void main(String[] args) {ApplicationContext applicationContext = new ClassPathXmlApplicationContext("bean.xml"); | |
Object bean1 =applicationContext.getBean("id01"); | |
System.out.println("bean1 ="+bean1); | |
Object bean2 =applicationContext.getBean("id01"); | |
System.out.println("bean2 ="+bean2); | |
System.out.println(bean1 == bean2); | |
} | |
运行后果如下:monster 创立.... | |
bean1=Monster{id=10,nickName='牛魔王', skill='芭蕉扇'} | |
monster 创立.... | |
bean2=Monster{id=10,nickName='牛魔王', skill='芭蕉扇'} | |
false |
阐明这两个对象,他的变量雷同,然而不是同一个对象,返回了 false
那么咱们须要晓得他是在哪里用到了原型呢?咱们 debug 看看
public abstract class AbstractApplicationContext extends DefaultResourceLoader implements ConfigurableApplicationContext, DisposableBean { | |
// 省略其余要害代码.... | |
public Object getBean(String name) throws BeansException {return this.getBeanFactory().getBean(name); | |
} | |
public <T> T getBean(String name, Class<T> requiredType) throws BeansException {return this.getBeanFactory().getBean(name, requiredType); | |
} | |
public <T> T getBean(Class<T> requiredType) throws BeansException {return this.getBeanFactory().getBean(requiredType); | |
} | |
public Object getBean(String name, Object... args) throws BeansException {return this.getBeanFactory().getBean(name, args); | |
} | |
public boolean containsBean(String name) {return this.getBeanFactory().containsBean(name); | |
} | |
public boolean isSingleton(String name) throws NoSuchBeanDefinitionException {return this.getBeanFactory().isSingleton(name); | |
} | |
public boolean isPrototype(String name) throws NoSuchBeanDefinitionException {return this.getBeanFactory().isPrototype(name); | |
} | |
} |
咱们发现他是采纳 BeanFactory 里的 getBean,那么我进到外面去看
public abstract class AbstractRefreshableApplicationContext extends AbstractApplicationContext { | |
// 省略其余要害代码.... | |
public final ConfigurableListableBeanFactory getBeanFactory() {synchronized(this.beanFactoryMonitor) {if (this.beanFactory == null) {throw new IllegalStateException("BeanFactory not initialized or already closed - call'refresh'before accessing beans via the ApplicationContext"); | |
} else {return this.beanFactory;} | |
} | |
} | |
} |
返回工厂后,咱们就进 BeanFactory 的 getBean 办法里看看
public abstract class AbstractBeanFactory extends FactoryBeanRegistrySupport implements ConfigurableBeanFactory { | |
// 省略其余要害代码.... | |
public AbstractBeanFactory() {} | |
public AbstractBeanFactory(BeanFactory parentBeanFactory) {this.parentBeanFactory = parentBeanFactory;} | |
public Object getBean(String name) throws BeansException {return this.doGetBean(name, (Class)null, (Object[])null, false); | |
} | |
public <T> T getBean(String name, Class<T> requiredType) throws BeansException {return this.doGetBean(name, requiredType, (Object[])null, false); | |
} | |
public Object getBean(String name, Object... args) throws BeansException {return this.doGetBean(name, (Class)null, args, false); | |
} | |
public <T> T getBean(String name, Class<T> requiredType, Object... args) throws BeansException {return this.doGetBean(name, requiredType, args, false); | |
} | |
} |
发现是调用 doGetBean 办法,那咱们再进去 doGetBean 办法看看
public abstract class AbstractBeanFactory extends FactoryBeanRegistrySupport implements ConfigurableBeanFactory { | |
// 省略其余要害代码.... | |
protected <T> T doGetBean(String name, Class<T> requiredType, final Object[] args, boolean typeCheckOnly) throws BeansException {final String beanName = this.transformedBeanName(name); | |
Object sharedInstance = this.getSingleton(beanName); | |
Object bean; | |
if (sharedInstance != null && args == null) {if (this.logger.isDebugEnabled()) {if (this.isSingletonCurrentlyInCreation(beanName)) {this.logger.debug("Returning eagerly cached instance of singleton bean'" + beanName + "'that is not fully initialized yet - a consequence of a circular reference"); | |
} else {this.logger.debug("Returning cached instance of singleton bean'" + beanName + "'"); | |
} | |
} | |
bean = this.getObjectForBeanInstance(sharedInstance, name, beanName, (RootBeanDefinition)null); | |
} else {if (this.isPrototypeCurrentlyInCreation(beanName)) {throw new BeanCurrentlyInCreationException(beanName); | |
} | |
BeanFactory parentBeanFactory = this.getParentBeanFactory(); | |
if (parentBeanFactory != null && !this.containsBeanDefinition(beanName)) {String nameToLookup = this.originalBeanName(name); | |
if (args != null) {return parentBeanFactory.getBean(nameToLookup, args); | |
} | |
return parentBeanFactory.getBean(nameToLookup, requiredType); | |
} | |
if (!typeCheckOnly) {this.markBeanAsCreated(beanName); | |
} | |
try {final RootBeanDefinition mbd = this.getMergedLocalBeanDefinition(beanName); | |
this.checkMergedBeanDefinition(mbd, beanName, args); | |
String[] dependsOn = mbd.getDependsOn(); | |
String[] arr$; | |
if (dependsOn != null) { | |
arr$ = dependsOn; | |
int len$ = dependsOn.length; | |
for(int i$ = 0; i$ < len$; ++i$) {String dependsOnBean = arr$[i$]; | |
this.getBean(dependsOnBean); | |
this.registerDependentBean(dependsOnBean, beanName); | |
} | |
} | |
if (mbd.isSingleton()) {sharedInstance = this.getSingleton(beanName, new ObjectFactory<Object>() {public Object getObject() throws BeansException { | |
try {return AbstractBeanFactory.this.createBean(beanName, mbd, args); | |
} catch (BeansException var2) {AbstractBeanFactory.this.destroySingleton(beanName); | |
throw var2; | |
} | |
} | |
}); | |
bean = this.getObjectForBeanInstance(sharedInstance, name, beanName, mbd); | |
} else if (mbd.isPrototype()) { | |
arr$ = null; | |
Object prototypeInstance; | |
try {this.beforePrototypeCreation(beanName); | |
prototypeInstance = this.createBean(beanName, mbd, args); | |
} finally {this.afterPrototypeCreation(beanName); | |
} | |
bean = this.getObjectForBeanInstance(prototypeInstance, name, beanName, mbd); | |
} else {String scopeName = mbd.getScope(); | |
Scope scope = (Scope)this.scopes.get(scopeName); | |
if (scope == null) {throw new IllegalStateException("No Scope registered for scope'" + scopeName + "'"); | |
} | |
try {Object scopedInstance = scope.get(beanName, new ObjectFactory<Object>() {public Object getObject() throws BeansException {AbstractBeanFactory.this.beforePrototypeCreation(beanName); | |
Object var1; | |
try {var1 = AbstractBeanFactory.this.createBean(beanName, mbd, args); | |
} finally {AbstractBeanFactory.this.afterPrototypeCreation(beanName); | |
} | |
return var1; | |
} | |
}); | |
bean = this.getObjectForBeanInstance(scopedInstance, name, beanName, mbd); | |
} catch (IllegalStateException var21) {throw new BeanCreationException(beanName, "Scope'" + scopeName + "'is not active for the current thread;" + "consider defining a scoped proxy for this bean if you intend to refer to it from a singleton", var21); | |
} | |
} | |
} catch (BeansException var23) {this.cleanupAfterBeanCreationFailure(beanName); | |
throw var23; | |
} | |
} | |
if (requiredType != null && bean != null && !requiredType.isAssignableFrom(bean.getClass())) { | |
try {return this.getTypeConverter().convertIfNecessary(bean, requiredType); | |
} catch (TypeMismatchException var22) {if (this.logger.isDebugEnabled()) {this.logger.debug("Failed to convert bean'" + name + "'to required type [" + ClassUtils.getQualifiedName(requiredType) + "]", var22); | |
} | |
throw new BeanNotOfRequiredTypeException(name, requiredType, bean.getClass()); | |
} | |
} else {return bean;} | |
} | |
} |
代码很多,我这里采纳图片的形式标注进去
对于在 spring 框架中原型模式,因为小编程度无限,暂且先理解这么多
四、浅拷贝和深拷贝
浅拷贝的介绍
对于数据类型是根本数据类型的成员变量,浅拷贝会间接进行值传递,也就是将该属性值复制一份给新的对象
。
对于数据类型是援用数据类型的成员变量,比如说成员变量是某个数组、某个类的对象等,那么 浅拷贝会进行援用传递,也就是只是将该成员变量的援用值(内存地址)复制一份给新的对象
。
为实际上两个对象的该成员变量都指向同一个实例。
在这种状况下,在一个对象中批改该成员变量会影响到另一个对象的该成员变量值
比如说之前克隆羊,咱们增加一个对象字段
class Sheep implements Cloneable { | |
// 省略其余关键性代码..... | |
private Sheep friend; | |
public Sheep(String name, int age, String color, String address, Sheep friend) { | |
this.name = name; | |
this.age = age; | |
this.color = color; | |
this.address = address; | |
this.friend = friend; | |
} | |
public Sheep getFriend() {return friend;} | |
public void setFriend(Sheep friend) {this.friend = friend;} | |
} |
这时咱们创立 demo,一起看看领会援用拷贝地址指向新对象
public static void main(String[] args) {Sheep friend = new Sheep("jack", 2, "彩色","内蒙古"); | |
Sheep sheep = new Sheep("tom", 1, "红色","内蒙古",friend); | |
Sheep sheep2 = (Sheep)sheep.clone(); | |
Sheep sheep3 = (Sheep)sheep.clone(); | |
Sheep sheep4 = (Sheep)sheep.clone(); | |
System.out.println(sheep2 + "hashCode"+sheep2.friend.hashCode()); | |
System.out.println(sheep3+ "hashCode"+sheep3.friend.hashCode()); | |
System.out.println(sheep4+ "hashCode"+sheep4.friend.hashCode()); | |
} | |
运行后果如下:Sheep{name='tom', age=1, color='红色', address=' 内蒙古}hashCode460141958 | |
Sheep{name='tom', age=1, color='红色', address=' 内蒙古}hashCode460141958 | |
Sheep{name='tom', age=1, color='红色', address=' 内蒙古}hashCode460141958 |
有没有发现,咱们输入好敌人的时候,都是指向同一个地址
这证实咱们没有真正的拷贝一个好敌人的对象,咱们称这为浅拷贝
浅拷贝是应用默认的 clone()办法来实现:就是 sheep = (Sheep) super.clone();
深拷贝根本介绍
复制对象的所有根本数据类型的成员变量值
为所有援用数据类型的成员变量申请存储空间,并复制每个援用数据类型成员变量所援用的对象,直到该对象可达的所有对象
。也就是说,对象进行深拷贝要对整个对象( 包含对象的援用类型
) 进行拷贝
深拷贝实现形式 1:重写 clone 办法来实现深拷贝
深拷贝实现形式 2:通过对象序列化实现深拷贝(举荐)
咱们通过新的示例类来举例说明这两种状况
class DeepCloneableTarget implements Cloneable { | |
public String name; //String 属 性 | |
public String cloneClass; //String 属 性 | |
public DeepCloneableTarget() {super(); | |
} | |
public DeepCloneableTarget(String name, String cloneClass) { | |
this.name = name; | |
this.cloneClass = cloneClass; | |
} | |
public String getName() {return name;} | |
public void setName(String name) {this.name = name;} | |
public String getCloneClass() {return cloneClass;} | |
public void setCloneClass(String cloneClass) {this.cloneClass = cloneClass;} | |
@Override | |
protected Object clone() throws CloneNotSupportedException {return super.clone(); | |
} | |
} |
咱们应用默认的拷贝办法,当初咱们增加多一个类增加对象援用
class DeepProtoType implements Cloneable { | |
public String name; //String 属 性 | |
public DeepCloneableTarget deepCloneableTarget;// 援用类型 | |
public DeepProtoType() {} | |
public DeepProtoType(String name, DeepCloneableTarget deepCloneableTarget) { | |
this.name = name; | |
this.deepCloneableTarget = deepCloneableTarget; | |
} | |
public String getName() {return name;} | |
public void setName(String name) {this.name = name;} | |
public DeepCloneableTarget getDeepCloneableTarget() {return deepCloneableTarget;} | |
public void setDeepCloneableTarget(DeepCloneableTarget deepCloneableTarget) {this.deepCloneableTarget = deepCloneableTarget;} | |
} |
那么咱们的第一种形式是:采纳重写 clone 办法来实现深拷贝
class DeepProtoType implements Cloneable { | |
// 省略其余要害代码.... | |
@Override | |
protected Object clone() throws CloneNotSupportedException { | |
// 实现对根本数据类型和 String 类型的拷贝 | |
Object deep = null; | |
deep = super.clone(); | |
// 再实现对类里的援用类型拷贝 | |
DeepProtoType deepProtoType = (DeepProtoType)deep; | |
deepProtoType.setDeepCloneableTarget((DeepCloneableTarget)deepCloneableTarget.clone()); | |
return deepProtoType; | |
} | |
} |
接下里咱们应用 demo 看看第一种形式的深拷贝成果怎么样?
public static void main(String[] args) {DeepCloneableTarget target = new DeepCloneableTarget("大牛", "大牛的类"); | |
DeepProtoType p1 = new DeepProtoType(); | |
p1.setName("小明"); | |
p1.setDeepCloneableTarget(target); | |
try { | |
// 形式 1 实现深拷贝 | |
DeepProtoType p2 = (DeepProtoType)p1.clone(); | |
System.out.println("p1.name =" + p1.name + "p1.deepCloneableTarget=" + p1.deepCloneableTarget.hashCode()); | |
System.out.println("p2.name =" + p1.name + "p2.deepCloneableTarget=" + p2.deepCloneableTarget.hashCode()); | |
} catch (CloneNotSupportedException e) {e.printStackTrace(); | |
} | |
} | |
运行后果如下:p1.name = 小明 p1.deepCloneableTarget=460141958 | |
p2.name = 小明 p2.deepCloneableTarget=1163157884 |
这种形式采纳先拷贝根本数据类型再拷贝援用类型
1. 这种形式如果 DeepCloneableTarget 里也有援用类型的类,那么它也须要重写这个办法,这就会导致多重重写
2. 如果多个类的援用就会导致很繁琐,工作量微小,关系简单
论断:只适宜一层关系的援用,理论不太举荐
那么咱们的第二种形式是:通过对象序列化实现深拷贝(举荐)
应用序列化的形式,咱们须要实现 Serializable 接口
public class DeepProtoType implements Serializable, Cloneable{// 省略其余要害代码....} | |
public class DeepCloneableTarget implements Serializable, Cloneable{// 省略其余要害代码....} |
public class DeepProtoType implements Serializable, Cloneable{ | |
// 省略其余要害代码.... | |
// 深拷贝 - 形式 2 通过对象的序列化实现 (举荐) | |
public Object deepClone() { | |
// 创立流对象 | |
ByteArrayOutputStream bos = null; | |
ObjectOutputStream oos = null; | |
ByteArrayInputStream bis = null; | |
ObjectInputStream ois = null; | |
try { | |
// 序列化 | |
bos = new ByteArrayOutputStream(); | |
oos = new ObjectOutputStream(bos); | |
oos.writeObject(this); // 以后这个对象以对象流的形式输入 | |
// 反序列化 | |
bis = new ByteArrayInputStream(bos.toByteArray()); | |
ois = new ObjectInputStream(bis); | |
DeepProtoType copyObj = (DeepProtoType) ois.readObject(); | |
return copyObj; | |
} catch (Exception e) {return null;} finally { | |
// 敞开流 | |
try {bos.close(); | |
oos.close(); | |
bis.close(); | |
ois.close();} catch (Exception e2) {}} | |
} | |
} |
接下里咱们应用 demo 看看第二种形式的深拷贝成果怎么样?
public static void main(String[] args) {DeepCloneableTarget target = new DeepCloneableTarget("大牛", "小牛"); | |
DeepProtoType p1 = new DeepProtoType(); | |
p1.setName("小明"); | |
p1.setDeepCloneableTarget(target); | |
// 形式 2 实现深拷贝 | |
DeepProtoType p2 = (DeepProtoType) p1.deepClone(); | |
System.out.println("p1.name =" + p1.name + "p1.deepCloneableTarget=" + p1.deepCloneableTarget.hashCode()); | |
System.out.println("p2.name =" + p1.name + "p2.deepCloneableTarget=" + p2.deepCloneableTarget.hashCode()); | |
} | |
运行后果如下:p1.name = 小明 p1.deepCloneableTarget=1836019240 | |
p2.name = 小明 p2.deepCloneableTarget=363771819 |
五、原型模式的注意事项和细节
创立新的对象
比较复杂时,能够 利用原型模式简化对象的创立过程,同时也可能提高效率
不必从新初始化对象,而是动静地取得对象运行时的状态
如果 原始对象发生变化(减少或者缩小属性),其它克隆对象的也会产生相应的变动,无需批改代码
在实现深克隆的时候可能须要比较复杂的代码
毛病:须要为每一个类装备一个克隆办法,这对全新的类来说不是很难,但对已有的类进行革新时,须要批改其源代码,违反了 ocp 准则
,这点请留神.
参考资料
尚硅谷:设计模式(韩顺平老师):单例模式
Refactoring.Guru:《深刻设计模式》