共计 2525 个字符,预计需要花费 7 分钟才能阅读完成。
前言
LinkedBlockingQueue 实现了 BlockingQueue,它是阻塞队列的一种,可用于线程池中。不同于 ConcurrentLinkedQueue 的 CAS 非阻塞算法,它底层是用锁实现的阻塞队列。
实现原理
先来看要害属性:
// 队列容量,最大为 Integer.MAX_VALUE
private final int capacity;
// 队列长度
private final AtomicInteger count = new AtomicInteger();
// 头结点
transient Node<E> head;
// 尾结点
private transient Node<E> last;
// 移除操作的锁,take/poll 办法用到
private final ReentrantLock takeLock = new ReentrantLock();
// 移除操作须要期待的条件 notEmpty,与 takeLock 绑定
private final Condition notEmpty = takeLock.newCondition();
// 入队操作的锁,put/offer 办法用到
private final ReentrantLock putLock = new ReentrantLock();
// 入队操作须要期待的条件 notFull,与 putLock 绑定
private final Condition notFull = putLock.newCondition();
能够看到,LinkedBlockingQueue 外部是用单向链表实现的,并且它有两把锁:takeLock 和 putLock,以及对应的两个期待条件:notEmpty 和 notFull。takeLock 管制同一时刻只有一个线程从队列头部获取 / 移除元素,putLock 管制同一时刻只有一个线程在队列尾部增加元素。
再来看要害办法:
1. 无参构造函数
public LinkedBlockingQueue() {
// 调用有参构造函数,初始化容量 capacity 为 int 最大值
this(Integer.MAX_VALUE);
}
2. 有参构造函数
public LinkedBlockingQueue(int capacity) {
// 容量不能小于 0,留神也不能等于 0,这点与惯例的汇合不同
if (capacity <= 0) throw new IllegalArgumentException();
this.capacity = capacity;
// 初始化头结点和尾结点为哑节点
last = head = new Node<E>(null);
}
3.put() 操作
public void put(E e) throws InterruptedException {if (e == null) throw new NullPointerException();
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {while (count.get() == capacity) {notFull.await();
}
enqueue(node);
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();} finally {putLock.unlock();
}
if (c == 0)
signalNotEmpty();}
4.put() 操作
public boolean offer(E e) {if (e == null) throw new NullPointerException();
final AtomicInteger count = this.count;
if (count.get() == capacity)
return false;
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {if (count.get() < capacity) {enqueue(node);
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();}
} finally {putLock.unlock();
}
if (c == 0)
signalNotEmpty();
return c >= 0;
}
5.take() 操作
public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {while (count.get() == 0) {notEmpty.await();
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();} finally {takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}
6.poll() 操作
public E poll() {
final AtomicInteger count = this.count;
if (count.get() == 0)
return null;
E x = null;
int c = -1;
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {if (count.get() > 0) {x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();}
} finally {takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}
今天更新,先睡啦,晚安全世界!
正文完