数据结构—均衡二叉树(Java)
<!– more –>
博客阐明
文章所波及的材料来自互联网整顿和集体总结,意在于集体学习和教训汇总,如有什么中央侵权,请分割自己删除,谢谢!
阐明
均衡二叉树也叫均衡二叉搜寻树(Self-balancing binary search tree)又被称为 AVL 树,能够保障查问效率较高。
具备以下特点:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过 1,并且左右两个子树都是一棵均衡二叉树。均衡二叉树的罕用实现办法有红黑树、AVL、替罪羊树、Treap、舒展树等。
代码
package cn.guizimo.avl;
public class AVLTree {public static void main(String[] args) {int[] arr = {10, 11, 7, 6, 8, 9};
AVLTreeDemo avlTree = new AVLTreeDemo();
for(int i=0; i < arr.length; i++) {avlTree.add(new Node(arr[i]));
}
System.out.println("中序遍历");
avlTree.infixOrder();
System.out.println("均衡");
System.out.println("树的高度:" + avlTree.getRoot().height()); //3
System.out.println("左子树高度:" + avlTree.getRoot().leftHeight()); // 2
System.out.println("右子树高度" + avlTree.getRoot().rightHeight()); // 2
System.out.println("根节点:" + avlTree.getRoot());//8
}
}
class AVLTreeDemo{
private Node root;
public Node getRoot() {return root;}
// 查找以后节点
public Node search(int value) {if (root == null) {return null;} else {return root.search(value);
}
}
// 找到最小值
public int delRightTreeMin(Node node) {
Node target = node;
while(target.left != null) {target = target.left;}
delNode(target.value);
return target.value;
}
// 删除节点
public void delNode(int value) {if (root == null) {return;} else {
// 删除叶子节点
Node targetNode = search(value);
if (targetNode == null) {return;}
if (root.left == null && root.right == null) {
root = null;
return;
}
Node parent = searchParent(value);
if (targetNode.left == null && targetNode.right == null) {if (parent.left != null && parent.left.value == value) {parent.left = null;} else if (parent.right != null && parent.right.value == value) {parent.right = null;}
// 删除两颗子树的节点
} else if (targetNode.left != null && targetNode.right != null) {int i = delRightTreeMin(targetNode.right);
targetNode.value = i;
// 删除一颗子树的节点
} else {if (targetNode.left != null) {if (parent != null) {if (parent.left.value == value) {parent.left = targetNode.left;} else {parent.right = targetNode.right;}
} else {root = targetNode.left;}
} else {if (parent != null) {if (parent.left.value == value) {parent.left = targetNode.right;} else if (parent.right.value == value) {parent.right = targetNode.right;}
} else {root = targetNode.right;}
}
}
}
}
// 查问以后节点的父节点
public Node searchParent(int value) {if (root == null) {return null;} else {return root.searchParent(value);
}
}
// 增加节点
public void add(Node node) {if (root == null) {root = node;} else {root.add(node);
}
}
// 中序遍历
public void infixOrder() {if (root != null) {root.infixOrder();
} else {System.out.println("");
}
}
}
class Node {
int value;
Node left;
Node right;
public Node(int value) {this.value = value;}
// 左子树的高度
public int leftHeight() {if (left == null) {return 0;}
return left.height();}
// 右子树的高度
public int rightHeight() {if (right == null) {return 0;}
return right.height();}
// 以后节点的高度
public int height() {return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;
}
@Override
public String toString() {
return "Node{" +
"value=" + value +
'}';
}
// 查找节点
public Node search(int value) {if (value == this.value) {return this;} else if (value < this.value) {if (this.left == null) {return null;}
return this.left.search(value);
} else {if (this.right == null) {return null;}
return this.right.search(value);
}
}
// 查问父节点
public Node searchParent(int value) {if ((this.left != null && this.left.value == value) ||
(this.right != null && this.right.value == value)) {return this;} else {if (value < this.value && this.left != null) {return this.left.searchParent(value);
} else if (value >= this.value && this.right != null) {return this.right.searchParent(value);
} else {return null;}
}
}
// 增加节点
public void add(Node node) {if (node == null) {return;}
if (node.value < this.value) {if (this.left == null) {this.left = node;} else {this.left.add(node);
}
} else {if (this.right == null) {this.right = node;} else {this.right.add(node);
}
}
// 左旋转
if(rightHeight() - leftHeight() > 1) {if(right != null && right.leftHeight() > right.rightHeight()) {right.rightRotate();
leftRotate();} else {leftRotate();
}
return ;
}
// 右旋转
if(leftHeight() - rightHeight() > 1) {if(left != null && left.rightHeight() > left.leftHeight()) {left.leftRotate();
rightRotate();} else {rightRotate();
}
}
}
// 中序遍历
public void infixOrder() {if (this.left != null) {this.left.infixOrder();
}
System.out.println(this);
if (this.right != null) {this.right.infixOrder();
}
}
// 左旋转
private void leftRotate() {Node newNode = new Node(value);
newNode.left = left;
newNode.right = right.left;
value = right.value;
right = right.right;
left = newNode;
}
// 右旋转
private void rightRotate() {Node newNode = new Node(value);
newNode.right = right;
newNode.left = left.right;
value = left.value;
left = left.left;
right = newNode;
}
}
测试
感激
尚硅谷
以及勤奋的本人