关于java:如何合理地估算线程池大小

34次阅读

共计 9989 个字符,预计需要花费 25 分钟才能阅读完成。

这个问题尽管看起来很小,却并不那么容易答复。

大家如果有更好的办法欢送赐教,先来一个天真的估算办法:

假如要求一个零碎的 TPS(Transaction Per Second 或者 Task Per Second)至多为 20,而后假如每个 Transaction 由一个线程实现,持续假如均匀每个线程解决一个 Transaction 的工夫为 4s。

那么问题转化为: 如何设计线程池大小,使得能够在 1s 内解决完 20 个 Transaction?

计算过程很简略,每个线程的解决能力为 0.25TPS,那么要达到 20TPS,显然须要 20/0.25=80 个线程。

很显然这个估算办法很天真,因为它没有思考到 CPU 数目。个别服务器的 CPU 核数为 16 或者 32,如果有 80 个线程,那么必定会带来太多不必要的线程上下文切换开销。

再来第二种简略的但不知是否可行的办法(N 为 CPU 总核数):

  1. 如果是 CPU 密集型利用,则线程池大小设置为 N +1
  2. 如果是 IO 密集型利用,则线程池大小设置为 2N+1

如果一台服务器上只部署这一个利用并且只有这一个线程池,那么这种估算或者正当,具体还需自行测试验证。

接下来在这个文档:服务器性能 IO 优化 中发现一个估算公式:

最佳线程数目 =((线程等待时间 + 线程 CPU 工夫)/ 线程 CPU 工夫)* CPU 数目

比方均匀每个线程 CPU 运行工夫为 0.5s,而线程等待时间(非 CPU 运行工夫,比方 IO)为 1.5s,CPU 外围数为 8,那么依据下面这个公式估算失去:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:

最佳线程数目 =(线程等待时间与线程 CPU 工夫之比 + 1)* CPU 数目

能够得出一个论断: 线程等待时间所占比例越高,须要越多线程。线程 CPU 工夫所占比例越高,须要越少线程。

上一种估算办法也和这个论断相合。

一个零碎最快的局部是 CPU,所以决定一个零碎吞吐量下限的是 CPU。加强 CPU 解决能力,能够进步零碎吞吐量下限。但依据短板效应,实在的零碎吞吐量并不能单纯依据 CPU 来计算。那要进步零碎吞吐量,就须要从“零碎短板”(比方网络提早、IO)着手:

  • 尽量进步短板操作的并行化比率,比方多线程下载技术
  • 加强短板能力,比方用 NIO 代替 IO

第一条能够分割到 Amdahl 定律,这条定律定义了串行零碎并行化后的减速比计算公式:

减速比 = 优化前零碎耗时 / 优化后零碎耗时

减速比越大,表明零碎并行化的优化成果越好。Addahl 定律还给出了零碎并行度、CPU 数目和减速比的关系,减速比为 Speedup,零碎串行化比率(指串行执行代码所占比率)为 F,CPU 数目为 N:

Speedup <= 1 / (F + (1-F)/N)

当 N 足够大时,串行化比率 F 越小,减速比 Speedup 越大。

写到这里,我忽然冒出一个问题。

是否应用线程池就肯定比应用单线程高效呢?

答案是否定的,比方 Redis 就是单线程的,但它却十分高效,基本操作都能达到十万量级 /s。从线程这个角度来看,局部起因在于:

  • 多线程带来线程上下文切换开销,单线程就没有这种开销

当然“Redis 很快”更实质的起因在于:Redis 根本都是内存操作,这种状况下单线程能够很高效地利用 CPU。而多线程实用场景个别是:存在相当比例的 IO 和网络操作。

所以即便有下面的简略估算办法,兴许看似正当,但实际上也未必正当,都须要联合零碎真实情况(比方是 IO 密集型或者是 CPU 密集型或者是纯内存操作)和硬件环境(CPU、内存、硬盘读写速度、网络情况等)来一直尝试达到一个符合实际的正当估算值。

最初来一个“Dark Magic”估算办法(因为我临时还没有搞懂它的原理),应用上面的类:

package threadpool;

import java.math.BigDecimal;
import java.math.RoundingMode;
import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.BlockingQueue;

/**
 * A class that calculates the optimal thread pool boundaries. It takes the
 * desired target utilization and the desired work queue memory consumption as
 * input and retuns thread count and work queue capacity.
 *
 * @author Niklas Schlimm
 */
public abstract class PoolSizeCalculator {

    /**
     * The sample queue size to calculate the size of a single {@link Runnable}
     * element.
     */
    private final int SAMPLE_QUEUE_SIZE = 1000;

    /**
     * Accuracy of test run. It must finish within 20ms of the testTime
     * otherwise we retry the test. This could be configurable.
     */
    private final int EPSYLON = 20;

    /**
     * Control variable for the CPU time investigation.
     */
    private volatile boolean expired;

    /**
     * Time (millis) of the test run in the CPU time calculation.
     */
    private final long testtime = 3000;

    /**
     * Calculates the boundaries of a thread pool for a given {@link Runnable}.
     *
     * @param targetUtilization the desired utilization of the CPUs (0 <= targetUtilization <=      *            1)      * @param targetQueueSizeBytes      *            the desired maximum work queue size of the thread pool (bytes)
     */
    protected void calculateBoundaries(BigDecimal targetUtilization, BigDecimal targetQueueSizeBytes) {calculateOptimalCapacity(targetQueueSizeBytes);
        Runnable task = creatTask();
        start(task);
        start(task); // warm up phase
        long cputime = getCurrentThreadCPUTime();
        start(task); // test intervall
        cputime = getCurrentThreadCPUTime() - cputime;
        long waittime = (testtime * 1000000) - cputime;
        calculateOptimalThreadCount(cputime, waittime, targetUtilization);
    }

    private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {long mem = calculateMemoryUsage();
        BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(mem),
                RoundingMode.HALF_UP);
        System.out.println("Target queue memory usage (bytes):"
                + targetQueueSizeBytes);
        System.out.println("createTask() produced" + creatTask().getClass().getName() + "which took" + mem + "bytes in a queue");
        System.out.println("Formula:" + targetQueueSizeBytes + "/" + mem);
        System.out.println("* Recommended queue capacity (bytes):" + queueCapacity);
    }

    /**
     * Brian Goetz'optimal thread count formula, see'Java Concurrency in
     * * Practice' (chapter 8.2)      *
     * * @param cpu
     * *            cpu time consumed by considered task
     * * @param wait
     * *            wait time of considered task
     * * @param targetUtilization
     * *            target utilization of the system
     */
    private void calculateOptimalThreadCount(long cpu, long wait,
                                             BigDecimal targetUtilization) {BigDecimal waitTime = new BigDecimal(wait);
        BigDecimal computeTime = new BigDecimal(cpu);
        BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime()
                .availableProcessors());
        BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization)
                .multiply(new BigDecimal(1).add(waitTime.divide(computeTime,
                        RoundingMode.HALF_UP)));
        System.out.println("Number of CPU:" + numberOfCPU);
        System.out.println("Target utilization:" + targetUtilization);
        System.out.println("Elapsed time (nanos):" + (testtime * 1000000));
        System.out.println("Compute time (nanos):" + cpu);
        System.out.println("Wait time (nanos):" + wait);
        System.out.println("Formula:" + numberOfCPU + "*"
                + targetUtilization + "* (1 +" + waitTime + "/"
                + computeTime + ")");
        System.out.println("* Optimal thread count:" + optimalthreadcount);
    }

    /**
     * * Runs the {@link Runnable} over a period defined in {@link #testtime}.
     * * Based on Heinz Kabbutz' ideas
     * * (http://www.javaspecialists.eu/archive/Issue124.html).
     * *
     * * @param task
     * *            the runnable under investigation
     */
    public void start(Runnable task) {
        long start = 0;
        int runs = 0;
        do {if (++runs > 5) {throw new IllegalStateException("Test not accurate");
            }
            expired = false;
            start = System.currentTimeMillis();
            Timer timer = new Timer();
            timer.schedule(new TimerTask() {public void run() {expired = true;}
            }, testtime);
            while (!expired) {task.run();
            }
            start = System.currentTimeMillis() - start;
            timer.cancel();} while (Math.abs(start - testtime) > EPSYLON);
        collectGarbage(3);
    }

    private void collectGarbage(int times) {for (int i = 0; i < times; i++) {System.gc();
            try {Thread.sleep(10);
            } catch (InterruptedException e) {Thread.currentThread().interrupt();
                break;
            }
        }
    }

    /**
     * Calculates the memory usage of a single element in a work queue. Based on
     * Heinz Kabbutz' ideas
     * (http://www.javaspecialists.eu/archive/Issue029.html).
     *
     * @return memory usage of a single {@link Runnable} element in the thread
     * pools work queue
     */
    public long calculateMemoryUsage() {BlockingQueue queue = createWorkQueue();
        for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {queue.add(creatTask());
        }

        long mem0 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();
        long mem1 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();

        queue = null;

        collectGarbage(15);

        mem0 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();
        queue = createWorkQueue();

        for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {queue.add(creatTask());
        }

        collectGarbage(15);

        mem1 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();

        return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
    }

    /**
     * Create your runnable task here.
     *
     * @return an instance of your runnable task under investigation
     */
    protected abstract Runnable creatTask();

    /**
     * Return an instance of the queue used in the thread pool.
     *
     * @return queue instance
     */
    protected abstract BlockingQueue createWorkQueue();

    /**
     * Calculate current cpu time. Various frameworks may be used here,
     * depending on the operating system in use. (e.g.
     * http://www.hyperic.com/products/sigar). The more accurate the CPU time
     * measurement, the more accurate the results for thread count boundaries.
     *
     * @return current cpu time of current thread
     */
    protected abstract long getCurrentThreadCPUTime();}

而后本人继承这个抽象类并实现它的三个形象办法,比方上面是我写的一个示例(工作是申请网络数据),其中我指定冀望 CPU 利用率为 1.0(即 100%),工作队列总大小不超过 100,000 字节:

package threadpool;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.lang.management.ManagementFactory;
import java.math.BigDecimal;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;

public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator {

    @Override
    protected Runnable creatTask() {return new AsyncIOTask();
    }

    @Override
    protected BlockingQueue createWorkQueue() {return new LinkedBlockingQueue(1000);
    }

    @Override
    protected long getCurrentThreadCPUTime() {return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();}

    public static void main(String[] args) {PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl();
        poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
    }

}

/**
 * 自定义的异步 IO 工作
 * @author Will
 *
 */
class AsyncIOTask implements Runnable {public void run() {
        HttpURLConnection connection = null;
        BufferedReader reader = null;
        try {
            String getURL = "http://baidu.com";
            URL getUrl = new URL(getURL);

            connection = (HttpURLConnection) getUrl.openConnection();
            connection.connect();
            reader = new BufferedReader(new InputStreamReader(connection.getInputStream()));

            String line;
            while ((line = reader.readLine()) != null) {// empty loop}
        }

        catch (IOException e) { } finally {if(reader != null) {
                try {reader.close();
                }
                catch(Exception e) {}}
            connection.disconnect();}

    }

}

失去如下输入:

Target queue memory usage (bytes): 100000
createTask() produced threadpool.AsyncIOTask which took 40 bytes in a queue
Formula: 100000 / 40
* Recommended queue capacity (bytes): 2500
Number of CPU: 8
Target utilization: 1
Elapsed time (nanos): 3000000000
Compute time (nanos): 280801800
Wait time (nanos): 2719198200
Formula: 8 * 1 * (1 + 2719198200 / 280801800)
* Optimal thread count: 88

举荐的工作队列大小为 2500,线程数为 88。顺次为根据,咱们就能够结构这样一个线程池:

ThreadPoolExecutor pool = new ThreadPoolExecutor(88, 88, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(2500));

能够将这个文件打包成可执行的 jar 文件,这样就能够拷贝到测试 / 正式环境上执行。

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>threadpool</groupId>
    <artifactId>dark-magic</artifactId>
    <version>1.0-SNAPSHOT</version>
    <packaging>jar</packaging>

    <name>dark_magic</name>
    <url>http://maven.apache.org</url>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <dependencies>

    </dependencies>

    <build>
        <finalName>dark-magic</finalName>

        <plugins>
            <plugin>
                <artifactId>maven-assembly-plugin</artifactId>
                <configuration>
                    <appendAssemblyId>false</appendAssemblyId>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                    <archive>
                        <manifest>
                            <!-- 此处指定 main 办法入口的 class -->
                            <mainClass>threadpool.SimplePoolSizeCaculatorImpl</mainClass>
                        </manifest>
                    </archive>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>assembly</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

起源:

www.cnblogs.com/cjsblog/p/9068886.html

参考:

http://ifeve.com/how-to-calcu…\
http://www.importnew.com/1738…\
https://www.cnblogs.com/cheri…

近期热文举荐:

1.Java 15 正式公布,14 个新个性,刷新你的认知!!

2. 终于靠开源我的项目弄到 IntelliJ IDEA 激活码了,真香!

3. 我用 Java 8 写了一段逻辑,共事直呼看不懂,你试试看。。

4. 吊打 Tomcat,Undertow 性能很炸!!

5.《Java 开发手册(嵩山版)》最新公布,速速下载!

感觉不错,别忘了顺手点赞 + 转发哦!

正文完
 0