关于java:排序算法入门之选择排序

34次阅读

共计 1528 个字符,预计需要花费 4 分钟才能阅读完成。

抉择排序

抉择排序也是利用了“挡板法”这个经典思维。

挡板右边是已排序区间,左边是未排序区间,那么每次的“抉择”是去找左边未排序区间的最小值,找到之后和挡板前面的第一个值换一下,而后再把挡板往右挪动一位,保障排好序的这些元素在挡板的右边。

比方之前的例子:{5, 2, 0, 1}

咱们用一个挡板来分隔数组是否排好序,
用指针 j 来寻找未排序区间的最小值;

第一轮 j 最后指向 5,而后遍历整个未排序区间,最终指向 0,那么 0 就和挡板后的第一个元素换一下,也就是和 5 替换一下地位,挡板向右挪动一位,完结第一轮。

第二轮,j 从挡板后的 2 开始遍历,最终指向 1,而后 1 和挡板后的第一个元素 2 换一下,挡板向右挪动一位,完结第二轮。

第三轮,j 从 2 开始遍历,最终指向 2,而后和 2 本人换一下,挡板向右挪动一位,完结第三轮。

还剩一个元素,不必遍历了,就完结了。

抉择排序与之前的插入排序比照来看,要留神两点:

  1. 挡板必须从 0 开始,而不能从 1 开始。尽管在这两种算法中,挡板的物理意义都是分隔已排序和未排序区间,然而它们的已排序区间里放的元素的意义不同:
  • 抉择排序是只能把以后的最小值放进来,而不能放其余的;
  • 插入排序的第一个元素能够为任意值。

所以抉择排序的挡板右边最开始不能有任何元素。

  1. 在外层循环时,
  • 抉择排序的最初一轮能够省略,因为只剩下最大的那个元素了;
  • 插入排序的最初一轮不可省略,因为它的地位还没定呢。
class Solution {public void selectionSort(int[] input) {if(input == null || input.length <= 1) {return;} 
  for(int i = 0; i < input.length - 1; i++) {
   int minValueIndex = i;
   for(int j = i + 1; j < input.length; j++) {if(input[j] < input[minValueIndex]) {minValueIndex = j;}
   }
   swap(input, minValueIndex, i);
  }
 }
 private void swap(int[] input, int x, int y) {int tmp = input[x];
  input[x] = input[y];
  input[y] = tmp;
 }
}

工夫复杂度

最内层的 if 语句每执行一次是 O(1),那么要执行多少次呢?

  • 当 i = 0 时,是 n-1 次;
  • 当 i = 1 时,是 n-2 次;
  • 最初是 1 次;

所以加起来,总共是:
(n-1) + (n-2) + … + 1 = n*(n-1) / 2 = O(n^2)

是这样算进去的,而不是一拍脑袋说两层循环就是 O(n^2).

空间复杂度

这个很简略,最多的状况是 call swap() 的时候,而后 call stack 上每一层就用了几个无限的变量,所以是 O(1)。

那天然也是原地排序算法了。

稳定性

这个答案是否定的,抉择排序并没有稳定性。

因为替换的过程毁坏了原有的绝对程序,比方: {5, 5, 2, 1, 0} 这个例子,第一次替换是 0 和 第一个 5 替换,于是第一个 5 跑到了数组的最初一位,且再也无翻身之地,所以第一个 5 第二个 5 的绝对程序就曾经打乱了。

这个问题在石头哥的那篇 谷歌面经文章 里有被考到哦,如果还没有看过这篇面经文章的,在公众号里回复「谷歌」二字,就能够看到了。

优化

抉择排序的其中一步是选出每一轮的最小值,那么这一步如果应用 heapify() 来优化,就能够从 O(n) 优化到 O(logn),这其实就变成了 heapSort.

如果你喜爱这篇文章,记得给我点赞留言哦~你们的反对和认可,就是我创作的最大能源,咱们下篇文章见!

我是小齐,纽约程序媛,终生学习者,每天晚上 9 点,云自习室里不见不散!

更多干货文章见我的 Github: https://github.com/xiaoqi6666…

正文完
 0