共计 8004 个字符,预计需要花费 21 分钟才能阅读完成。
今早,看到 CSDN 里举荐的 Python 获取女朋友发来加班拍照定位地址是酒店的段子,原本筹备验证下,顺便练练手的,最初,装置执行 pip install json 报没有指定版本号。
一怒之下搞我大 JAVA,验证可行与场景体遥想。废话不多说,先上硬货。
依赖导入
从博文上看是 exifread 模块,找我大 java 的对应的 jar,发现 metadata-extractor,而且官网还在继续更新,最近的 jar 是往年的。
这个元数据提取 jar 十分弱小,还反对视频信息的提取,看看官网介绍:
看到没,第一个示例,就写的反对我大 JAVA,让我犹如鸡血冲顶,在反对共事联调事件工单的同时,大肝这块。
<dependency>
<groupId>com.drewnoakes</groupId>
<artifactId>metadata-extractor</artifactId>
<version>2.16.0</version>
</dependency>
筹备工作
1、室外空阔地点关上 GPS
2、百度地图、北斗伴验证已连贯到 GPS 定位
3、设置手机带的照相机开启地位信息
4、拍照一张顺便查看照片详情
这里肯定要确定拍的照片的详情时有经纬度信息的,如果没有,你针对你的手机在 CSDN 里搜寻下怎么设置。这里顺便提下,CSDN 的浏览器插件真香。几乎就是咱们技术人事的福音,再以不必放心某某度的广告之类导致找货色吃力了,而且它很容纳,还时能够抉择本人喜爱的搜索引擎的。
示例 demo
这里先演示这个元数据提取 jar 能提取到的信息,顺便把取到的经纬度通过百度转地址。
因为是 demo,没有业务,我这里就间接在测试类里干了。没有什么业务,不波及什么秘密,能够上全码。
package com.easylinkin.bm.extractor;
import com.alibaba.fastjson.JSONObject;
import com.drew.imaging.ImageMetadataReader;
import com.drew.imaging.ImageProcessingException;
import com.drew.metadata.Directory;
import com.drew.metadata.Metadata;
import com.drew.metadata.Tag;
import com.easylinkin.bm.util.HttpUtils;
import lombok.extern.slf4j.Slf4j;
import java.io.File;
import java.io.IOException;
/**
* @author zhengwen
**/
@Slf4j
public class ImgTestCode {public static void main(String[] args) throws Exception {File file = new File("C:\\Users\\zhengwen\\Desktop\\test\\IMG_20210820_093958.jpg");
readImageInfo(file);
}
/**
* 提取照片外面的信息
*
* @param file 照片文件
* @throws ImageProcessingException
* @throws Exception
*/
private static void readImageInfo(File file) throws ImageProcessingException, Exception {Metadata metadata = ImageMetadataReader.readMetadata(file);
System.out.println("--- 打印全副详情 ---");
for (Directory directory : metadata.getDirectories()) {for (Tag tag : directory.getTags()) {System.out.format("[%s] - %s = %s\n",
directory.getName(), tag.getTagName(), tag.getDescription());
}
if (directory.hasErrors()) {for (String error : directory.getErrors()) {System.err.format("ERROR: %s", error);
}
}
}
System.out.println("-- 打印罕用信息 ---");
Double lat = null;
Double lng = null;
for (Directory directory : metadata.getDirectories()) {for (Tag tag : directory.getTags()) {String tagName = tag.getTagName(); // 标签名
String desc = tag.getDescription(); // 标签信息
if (tagName.equals("Image Height")) {System.err.println("图片高度:" + desc);
} else if (tagName.equals("Image Width")) {System.err.println("图片宽度:" + desc);
} else if (tagName.equals("Date/Time Original")) {System.err.println("拍摄工夫:" + desc);
} else if (tagName.equals("GPS Latitude")) {System.err.println("纬度 :" + desc);
System.err.println("纬度 ( 度分秒格局) :" + pointToLatlong(desc));
lat = latLng2Decimal(desc);
} else if (tagName.equals("GPS Longitude")) {System.err.println("经度:" + desc);
System.err.println("经度 ( 度分秒格局):" + pointToLatlong(desc));
lng = latLng2Decimal(desc);
}
}
}
System.err.println("-- 经纬度转地址 --");
// 经纬度转地主应用百度 api
convertGpsToLoaction(lat, lng);
}
/**
* 经纬度格局 转换为 度分秒格局 , 如果需要的话能够调用该办法进行转换
*
* @param point 坐标点
* @return
*/
public static String pointToLatlong(String point) {Double du = Double.parseDouble(point.substring(0, point.indexOf("°")).trim());
Double fen = Double.parseDouble(point.substring(point.indexOf("°") + 1, point.indexOf("'")).trim());
Double miao = Double.parseDouble(point.substring(point.indexOf("'") + 1, point.indexOf("\"")).trim());
Double duStr = du + fen / 60 + miao / 60 / 60;
return duStr.toString();}
/***
* 经纬度坐标格局转换(* °转十进制格局)* @param gps
*/
public static double latLng2Decimal(String gps) {String a = gps.split("°")[0].replace("","");
String b = gps.split("°")[1].split("'")[0].replace(" ","");
String c = gps.split("°")[1].split("'")[1].replace(" ","").replace("\"", "");
double gps_dou = Double.parseDouble(a) + Double.parseDouble(b) / 60 + Double.parseDouble(c) / 60 / 60;
return gps_dou;
}
/**
* api_key:注册的百度 api 的 key
* coords:经纬度坐标
* http://api.map.baidu.com/reverse_geocoding/v3/?ak="+api_key+"&output=json&coordtype=wgs84ll&location="+coords
* <p>
* 经纬度转地址信息
*
* @param gps_latitude 维度
* @param gps_longitude 精度
*/
private static void convertGpsToLoaction(double gps_latitude, double gps_longitude) throws IOException {
String apiKey = "YNxcSCAphFvuPD4LwcgWXwC3SEZZc7Ra";
String res = "";
String url = "http://api.map.baidu.com/reverse_geocoding/v3/?ak=" + apiKey + "&output=json&coordtype=wgs84ll&location=" + (gps_latitude + "," + gps_longitude);
System.err.println("【url】" + url);
res = HttpUtils.httpGet(url);
JSONObject object = JSONObject.parseObject(res);
if (object.containsKey("result")) {JSONObject result = object.getJSONObject("result");
if (result.containsKey("addressComponent")) {JSONObject address = object.getJSONObject("result").getJSONObject("addressComponent");
System.err.println("拍摄地点:" + address.get("country") + "" + address.get("province") +" "+ address.get("city") +" "+ address.get("district") +" "+ address.get("street") +" "+ result.get("formatted_address") +" "+ result.get("business"));
}
}
}
}
控制台打印:
上面贴出具体内容:
com.easylinkin.bm.extractor.ImgTestCode
--- 打印全副详情 ---
[JPEG] - Compression Type = Baseline
[JPEG] - Data Precision = 8 bits
[JPEG] - Image Height = 4032 pixels
[JPEG] - Image Width = 3024 pixels
[JPEG] - Number of Components = 3
[JPEG] - Component 1 = Y component: Quantization table 0, Sampling factors 2 horiz/2 vert
[JPEG] - Component 2 = Cb component: Quantization table 1, Sampling factors 1 horiz/1 vert
[JPEG] - Component 3 = Cr component: Quantization table 1, Sampling factors 1 horiz/1 vert
[Exif IFD0] - Date/Time = 2021:08:20 09:39:58
[Exif IFD0] - Model = YOTA Y3
[Exif IFD0] - YCbCr Positioning = Center of pixel array
[Exif IFD0] - Resolution Unit = Inch
[Exif IFD0] - Y Resolution = 72 dots per inch
[Exif IFD0] - X Resolution = 72 dots per inch
[Exif IFD0] - Make = YOTA
[GPS] - GPS Date Stamp = 2021:08:20
[GPS] - GPS Altitude Ref = Below sea level
[GPS] - GPS Longitude Ref = E
[GPS] - GPS Longitude = 114° 24'9.61"
[GPS] - GPS Processing Method = ASCII
[GPS] - GPS Latitude Ref = N
[GPS] - GPS Time-Stamp = 01:39:46.000 UTC
[GPS] - GPS Altitude = 21 metres
[GPS] - GPS Latitude = 30° 28'40.67"
[Exif SubIFD] - Color Space = sRGB
[Exif SubIFD] - F-Number = f/1.9
[Exif SubIFD] - Date/Time Digitized = 2021:08:20 09:39:58
[Exif SubIFD] - Focal Length = 3.9 mm
[Exif SubIFD] - Aperture Value = f/1.9
[Exif SubIFD] - Exposure Mode = Auto exposure
[Exif SubIFD] - Sub-Sec Time Digitized = 819350
[Exif SubIFD] - Exif Image Height = 4032 pixels
[Exif SubIFD] - Focal Length 35 = 23 mm
[Exif SubIFD] - Scene Capture Type = Standard
[Exif SubIFD] - Sub-Sec Time Original = 819350
[Exif SubIFD] - Exposure Program = Unknown (0)
[Exif SubIFD] - White Balance Mode = Auto white balance
[Exif SubIFD] - Exif Image Width = 3024 pixels
[Exif SubIFD] - Sub-Sec Time = 819350
[Exif SubIFD] - Shutter Speed Value = 1/1022 sec
[Exif SubIFD] - Metering Mode = Center weighted average
[Exif SubIFD] - Date/Time Original = 2021:08:20 09:39:58
[Exif SubIFD] - Components Configuration = YCbCr
[Exif SubIFD] - Exif Version = 2.20
[Exif SubIFD] - Flash = Flash did not fire
[Exif SubIFD] - Brightness Value = 0.0
[Exif SubIFD] - ISO Speed Ratings = 103
[Exif SubIFD] - Sensing Method = One-chip color area sensor
[Exif SubIFD] - FlashPix Version = 1.00
[Exif SubIFD] - Exposure Time = 1/1023 sec
[Interoperability] - Interoperability Index = Recommended Exif Interoperability Rules (ExifR98)
[Interoperability] - Interoperability Version = 1.00
[Exif Thumbnail] - Y Resolution = 72 dots per inch
[Exif Thumbnail] - Thumbnail Length = 21538 bytes
[Exif Thumbnail] - Thumbnail Offset = 959 bytes
[Exif Thumbnail] - Compression = JPEG (old-style)
[Exif Thumbnail] - Resolution Unit = Inch
[Exif Thumbnail] - X Resolution = 72 dots per inch
[Huffman] - Number of Tables = 4 Huffman tables
[File Type] - Detected File Type Name = JPEG
[File Type] - Detected File Type Long Name = Joint Photographic Experts Group
[File Type] - Detected MIME Type = image/jpeg
[File Type] - Expected File Name Extension = jpg
[File] - File Name = IMG_20210820_093958.jpg
[File] - File Size = 5215044 bytes
[File] - File Modified Date = 星期五 八月 20 09:39:59 +08:00 2021
-- 打印罕用信息 ---
初始化 HttpClientTest~~~ 开始
图片高度: 4032 pixels
图片宽度: 3024 pixels
经度: 114° 24'9.61"
经度 (度分秒格局): 114.40266944444446
纬度 : 30° 28'40.67"
纬度 (度分秒格局) : 30.477963888888887
拍摄工夫: 2021:08:20 09:39:58
-- 经纬度转地址 --【url】http://api.map.baidu.com/reverse_geocoding/v3/?ak=YNxcSCAphFvuPD4LwcgWXwC3SEZZc7Ra&output=json&coordtype=wgs84ll&location=30.477963888888887,114.40266944444446
初始化 HttpClientTest~~~ 完结
拍摄地点:中国 湖北省 武汉市 洪山区 软件园路 湖北省武汉市洪山区软件园路 9 关山, 光谷天地
下面的提取到的内容我就不解释了, 应该看得懂,不懂的,能够翻译英文,或者查 API 看打印的是啥。其余文件我就不演示了,有趣味的能够本人试试。我的百度地图的 AK 就先放这里,不便大家验证,省得说我骗人,反正我也是收费用的。最初再说一句,图片发送要么压缩到压缩包再发送,要么用数据线从手机里拷进去。我这里先用微信发的,基本上信息都被抹除了(在电脑上查看图片详情,其实也能够看到经纬度信息的)。还有,我还有个苹果手机,其实也是能够拍有地理位置信息的照片的,要关上隐衷里的定位,受权照相机。
总结与衍生想法
这个怎么说呢,还是很不错的。用到咱们的工作中的话,咱们感觉能够代替咱们之前做的一个打点巡检的,达到巡检地位拍张照片再配合机器码,不怕你让他人代拍照片了。还有考勤的公出单、内勤等等。
另外还想到这出门在外爱拍照的娃们,你们的照片放到云存储上,而后如果有无良服务商,根本能够把你的轨迹通过你上传的照片工夫绘制进去。。。
好了,这个就分享到这里。这里其实还给我一个最大的感触就是,如果我不晓得 A 就不会想到 B。要是我早晓得图片能够携带的信息,或者晓得照相机软件能够获取的信息,可能能够针对这些早点做点什么。。。。。。
起源:blog.csdn.net/zwrlj527/article/details/119823407