关于java:据说只有高端机器才配运行K8S网友1G内存的渣渣跑起来了

52次阅读

共计 4989 个字符,预计需要花费 13 分钟才能阅读完成。

记得之前应用 Minikube 装置 K8S 的时候,给分 3G 内存都嫌小!最近发现一个 K8S 的经量级实现 K3S,最低 0.5G 内存就能运行起来,装置不便,和 K8S 用起来区别不大。举荐给大家,心愿更多没高端机器的敌人也可能把 K8S 玩起来!

SpringBoot 实战电商我的项目 mall(40k+star)地址:https://github.com/macrozheng/mall

K3S 简介

K3S 是一个完全符合 Kubernetes 的发行版。能够应用繁多二进制包装置(不到 100MB),安装简单,内存只有一半,最低 0.5G 内存就能运行。

为什么叫 K3S?开发者心愿 K3S 在内存占用方面只有 K8S 的一半,Kubernetes 是一个 10 个字母的单词,简写为 K8S。那么一半大小就是 5 个字母的单词,简写为 K3S。

装置

应用官网提供的脚本装置非常不便,一个命令即可实现装置!

  • 应用脚本装置 K3S,同时会装置其余实用程序,包含 kubectlcrictlctrk3s-killall.shk3s-uninstall.sh
curl -sfL http://rancher-mirror.cnrancher.com/k3s/k3s-install.sh | INSTALL_K3S_MIRROR=cn sh -
  • 装置实现后提醒如下信息,并且会将 K3S 注册为 Linux 中的服务;
Complete!
[INFO]  Creating /usr/local/bin/kubectl symlink to k3s
[INFO]  Creating /usr/local/bin/crictl symlink to k3s
[INFO]  Skipping /usr/local/bin/ctr symlink to k3s, command exists in PATH at /usr/bin/ctr
[INFO]  Creating killall script /usr/local/bin/k3s-killall.sh
[INFO]  Creating uninstall script /usr/local/bin/k3s-uninstall.sh
[INFO]  env: Creating environment file /etc/systemd/system/k3s.service.env
[INFO]  systemd: Creating service file /etc/systemd/system/k3s.service
[INFO]  systemd: Enabling k3s unit
[INFO]  systemd: Starting k3s
  • 能够查看下服务的运行状态,此时显示状态为active
[root@linux-local k3s]# systemctl status k3s
● k3s.service - Lightweight Kubernetes
   Loaded: loaded (/etc/systemd/system/k3s.service; enabled; vendor preset: disabled)
   Active: active (running) since Thu 2021-01-28 10:18:39 CST; 2min 0s ago
     Docs: https://k3s.io
  Process: 14983 ExecStartPre=/sbin/modprobe overlay (code=exited, status=0/SUCCESS)
  Process: 14981 ExecStartPre=/sbin/modprobe br_netfilter (code=exited, status=0/SUCCESS)
 Main PID: 14986 (k3s-server)
    Tasks: 71
   Memory: 776.3M

应用

咱们应用 kubectl 命令操作 K3S 与之前操作 Minikube 中的 K8S 并没有什么区别,这次还是创立一个 Nginx 的 Deployment,而后通过创立 Service 将其裸露到内部拜访。

创立集群

  • 因为 K3S 默认装置了 kubectl 工具,咱们能够间接应用它,比方查看 kubectl 的版本号;
kubectl version
Client Version: version.Info{Major:"1", Minor:"20", GitVersion:"v1.20.2+k3s1", GitCommit:"1d4adb0301b9a63ceec8cabb11b309e061f43d5f", GitTreeState:"clean", BuildDate:"2021-01-14T23:52:37Z", GoVersion:"go1.15.5", Compiler:"gc", Platform:"linux/amd64"}
Server Version: version.Info{Major:"1", Minor:"20", GitVersion:"v1.20.2+k3s1", GitCommit:"1d4adb0301b9a63ceec8cabb11b309e061f43d5f", GitTreeState:"clean", BuildDate:"2021-01-14T23:52:37Z", GoVersion:"go1.15.5", Compiler:"gc", Platform:"linux/amd64"}
  • 还能够查看集群详细信息;
kubectl cluster-info
Kubernetes control plane is running at https://127.0.0.1:6443
CoreDNS is running at https://127.0.0.1:6443/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy
Metrics-server is running at https://127.0.0.1:6443/api/v1/namespaces/kube-system/services/https:metrics-server:/proxy
  • 查看集群中的所有 Node,能够发现 K3S 和之前的 Minikube 一样创立了一个单节点的简略集群。
kubectl get nodes
NAME          STATUS   ROLES                  AGE   VERSION
linux-local   Ready    control-plane,master   11m   v1.20.2+k3s1

部署利用

  • 指定好利用镜像并创立一个 Deployment,这里创立一个 Nginx 利用;
kubectl create deployment nginx-deployment --image=nginx:1.10
  • 查看所有 Deployment;
kubectl get deployments
NAME               READY   UP-TO-DATE   AVAILABLE   AGE
nginx-deployment   1/1     1            1           6s

查看利用

  • 查看 Pod 的具体状态,包含 IP 地址、占用端口、应用镜像等信息;
kubectl describe pods
Name:         nginx-deployment-597c48c9dd-j49bc
Namespace:    default
Priority:     0
Node:         linux-local/192.168.5.15
Start Time:   Thu, 28 Jan 2021 10:53:14 +0800
Labels:       app=nginx-deployment
              pod-template-hash=597c48c9dd
Annotations:  <none>
Status:       Running
IP:           10.42.0.7
IPs:
  IP:           10.42.0.7
Controlled By:  ReplicaSet/nginx-deployment-597c48c9dd
Containers:
  nginx:
    Container ID:   containerd://560bbeefc9c5714b92ae9d0a1305c2b8746082f4aa11791a2b6e1f4288254ef0
    Image:          nginx:1.10
    Image ID:       docker.io/library/nginx@sha256:6202beb06ea61f44179e02ca965e8e13b961d12640101fca213efbfd145d7575
    Port:           <none>
    Host Port:      <none>
    State:          Running
      Started:      Thu, 28 Jan 2021 10:53:16 +0800
    Ready:          True
    Restart Count:  0
    Environment:    <none>
    Mounts:
      /var/run/secrets/kubernetes.io/serviceaccount from default-token-fnrf7 (ro)
Conditions:
  Type              Status
  Initialized       True 
  Ready             True 
  ContainersReady   True 
  PodScheduled      True 
Volumes:
  default-token-fnrf7:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  default-token-fnrf7
    Optional:    false
QoS Class:       BestEffort
Node-Selectors:  <none>
Tolerations:     node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
                 node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
  Type    Reason     Age   From               Message
  ----    ------     ----  ----               -------
  Normal  Scheduled  38s   default-scheduler  Successfully assigned default/nginx-deployment-597c48c9dd-j49bc to linux-local
  Normal  Pulled     38s   kubelet            Container image "nginx:1.10" already present on machine
  Normal  Created    38s   kubelet            Created container nginx
  Normal  Started    37s   kubelet            Started container nginx
  • 进入容器外部并执行 bash 命令,如果想退出容器能够应用 exit 命令。
kubectl exec -it nginx-deployment-597c48c9dd-j49bc -- bash

内部拜访利用

  • 创立一个 Service 来裸露 nginx-deployment 这个 Deployment:
kubectl expose deployment/nginx-deployment --name="nginx-service" --type="NodePort" --port=80
  • 查看所有 Service 的状态;
kubectl get services
NAME            TYPE        CLUSTER-IP    EXTERNAL-IP   PORT(S)        AGE
kubernetes      ClusterIP   10.43.0.1     <none>        443/TCP        77m
nginx-service   NodePort    10.43.29.39   <none>        80:31494/TCP   10s
  • 在 Linux 服务器上通过 CURL 命令即可拜访 Nginx 服务,此时将打印 Nginx 主页信息;
curl localhost:31494
  • 相比 Minikube 在虚拟机中装置容器化利用,K3S 间接在本机上安装,间接关上防火墙端口即可在内部拜访;
# 开启端口
firewall-cmd --zone=public --add-port=31494/tcp --permanent
# 重启防火墙
firewall-cmd --reload
  • 在内部即可拜访 Nginx 主页,拜访地址:http://192.168.5.15:31494

总结

K3S 的确是一个很好用的 K8S 发行版本,不仅装置不便,而且内存占用也升高了。因为间接在本机上安装容器化利用,内部拜访也不便了!

本文 GitHub https://github.com/macrozheng/mall-learning 曾经收录,欢送大家 Star!

正文完
 0