关于java:基础篇JAVA原子组件和同步组件

前言

在应用多线程并发编程的时,常常会遇到对共享变量批改操作。此时咱们能够抉择ConcurrentHashMap,ConcurrentLinkedQueue来进行平安地存储数据。但如果单单是波及状态的批改,线程执行程序问题,应用Atomic结尾的原子组件或者ReentrantLock、CyclicBarrier之类的同步组件,会是更好的抉择,上面将一一介绍它们的原理和用法

  • 原子组件的实现原理CAS
  • AtomicBoolean、AtomicIntegerArray等原子组件的用法、
  • 同步组件的实现原理
  • ReentrantLock、CyclicBarrier等同步组件的用法

关注公众号,一起交换,微信搜一搜: 潜行前行

github地址,感激star

原子组件的实现原理CAS

  • cas的底层实现能够看下之前写的一篇文章:详解锁原理,synchronized、volatile+cas底层实现

利用场景

  • 可用来实现变量、状态在多线程下的原子性操作
  • 可用于实现同步锁(ReentrantLock)

原子组件

  • 原子组件的原子性操作是靠应用cas来自旋操作volatile变量实现的
  • volatile的类型变量保障变量被批改时,其余线程都能看到最新的值
  • cas则保障value的批改操作是原子性的,不会被中断

    根本类型原子类

    AtomicBoolean //布尔类型
    AtomicInteger //正整型数类型
    AtomicLong      //长整型类型
  • 应用示例

    public static void main(String[] args) throws Exception {
        AtomicBoolean atomicBoolean = new AtomicBoolean(false);
        //异步线程批改atomicBoolean
        CompletableFuture<Void> future = CompletableFuture.runAsync(() ->{
       try {
           Thread.sleep(1000); //保障异步线程是在主线程之后批改atomicBoolean为false
           atomicBoolean.set(false);
       }catch (Exception e){
           throw new RuntimeException(e);
       }
        });
        atomicBoolean.set(true);
        future.join();
        System.out.println("boolean value is:"+atomicBoolean.get());
    }
    ---------------输入后果------------------
    boolean value is:false

援用类原子类

AtomicReference
//加工夫戳版本的援用类原子类
AtomicStampedReference
//相当于AtomicStampedReference,AtomicMarkableReference关怀的是
//变量是否还是原来变量,两头被批改过也无所谓
AtomicMarkableReference
  • AtomicReference的源码如下,它外部定义了一个volatile V value,并借助VarHandle(具体子类是FieldInstanceReadWrite)实现原子操作,MethodHandles会帮忙计算value在类的偏移地位,最初在VarHandle调用Unsafe.public final native boolean compareAndSetReference(Object o, long offset, Object expected, Object x)办法原子批改对象的属性

    public class AtomicReference<V> implements java.io.Serializable {
        private static final long serialVersionUID = -1848883965231344442L;
        private static final VarHandle VALUE;
        static {
       try {
           MethodHandles.Lookup l = MethodHandles.lookup();
           VALUE = l.findVarHandle(AtomicReference.class, "value", Object.class);
       } catch (ReflectiveOperationException e) {
           throw new ExceptionInInitializerError(e);
       }
        }
        private volatile V value;
        ....

    ABA问题

  • 线程X筹备将变量的值从A改为B,然而这期间线程Y将变量的值从A改为C,而后再改为A;最初线程X检测变量值是A,并置换为B。但实际上,A曾经不再是原来的A了
  • 解决办法,是把变量定为惟一类型。值能够加上版本号,或者工夫戳。如加上版本号,线程Y的批改变为A1->B2->A3,此时线程X再更新则能够判断出A1不等于A3
  • AtomicStampedReference的实现和AtomicReference差不多,不过它原子批改的变量是volatile Pair<V> pair;,Pair是其内部类。AtomicStampedReference能够用来解决ABA问题

    public class AtomicStampedReference<V> {
        private static class Pair<T> {
       final T reference;
       final int stamp;
       private Pair(T reference, int stamp) {
           this.reference = reference;
           this.stamp = stamp;
       }
       static <T> Pair<T> of(T reference, int stamp) {
           return new Pair<T>(reference, stamp);
       }
        }
        private volatile Pair<V> pair;
  • 如果咱们不关怀变量在两头过程是否被批改过,而只是关怀以后变量是否还是原先的变量,则能够应用AtomicMarkableReference
  • AtomicStampedReference的应用示例

    public class Main {
        public static void main(String[] args) throws Exception {
       Test old = new Test("hello"), newTest = new Test("world");
       AtomicStampedReference<Test> reference = new AtomicStampedReference<>(old, 1);
       reference.compareAndSet(old, newTest,1,2);
       System.out.println("对象:"+reference.getReference().name+";版本号:"+reference.getStamp());
        }
    }
    class Test{
        Test(String name){ this.name = name; }
        public String name;
    }
    ---------------输入后果------------------
    对象:world;版本号:2

    数组原子类

    AtomicIntegerArray     //整型数组
    AtomicLongArray         //长整型数组
    AtomicReferenceArray    //援用类型数组
  • 数组原子类外部会初始一个final的数组,它把整个数组当做一个对象,而后依据下标index计算法元素偏移量,再调用UNSAFE.compareAndSetReference进行原子操作。数组并没被volatile润饰,为了保障元素类型在不同线程的可见,获取元素应用到了UNSAFEpublic native Object getReferenceVolatile(Object o, long offset)办法来获取实时的元素值
  • 应用示例

    //元素默认初始化为0
    AtomicIntegerArray array = new AtomicIntegerArray(2);
    // 下标为0的元素,期待值是0,更新值是1
    array.compareAndSet(0,0,1);
    System.out.println(array.get(0));
    ---------------输入后果------------------
    1

属性原子类

AtomicIntegerFieldUpdater 
AtomicLongFieldUpdater
AtomicReferenceFieldUpdater
  • 如果操作对象是某一类型的属性,能够应用AtomicIntegerFieldUpdater原子更新,不过类的属性须要定义成volatile润饰的变量,保障该属性在各个线程的可见性,否则会报错
  • 应用示例

    public class Main {
        public static void main(String[] args) {
       AtomicReferenceFieldUpdater<Test,String> fieldUpdater = AtomicReferenceFieldUpdater.newUpdater(Test.class,String.class,"name");
       Test test = new Test("hello world");
       fieldUpdater.compareAndSet(test,"hello world","siting");
       System.out.println(fieldUpdater.get(test));
       System.out.println(test.name);
        }
    }
    class Test{
        Test(String name){ this.name = name; }
        public volatile String name;
    }
    ---------------输入后果------------------
    siting
    siting

累加器

Striped64
LongAccumulator
LongAdder
//accumulatorFunction:运算规定,identity:初始值
public LongAccumulator(LongBinaryOperator accumulatorFunction,long identity)
  • LongAccumulator和LongAdder都继承于Striped64,Striped64的次要思维是和ConcurrentHashMap有点相似,分段计算,单个变量计算并发性能慢时,咱们能够把数学运算扩散在多个变量,而须要计算总值时,再一一累加起来
  • LongAdder相当于LongAccumulator一个特例实现
  • LongAccumulator的示例

    public static void main(String[] args) throws Exception {
        LongAccumulator accumulator = new LongAccumulator(Long::sum, 0);
        for(int i=0;i<100000;i++){
       CompletableFuture.runAsync(() -> accumulator.accumulate(1));
        }
        Thread.sleep(1000); //期待全副CompletableFuture线程执行实现,再获取
        System.out.println(accumulator.get());
    }
    ---------------输入后果------------------
    100000

    同步组件的实现原理

  • java的少数同步组件会在外部保护一个状态值,和原子组件一样,批改状态值时个别也是通过cas来实现。而状态批改的保护工作被Doug Lea形象出AbstractQueuedSynchronizer(AQS)来实现
  • AQS的原理能够看下之前写的一篇文章:详解锁原理,synchronized、volatile+cas底层实现

同步组件

ReentrantLock、ReentrantReadWriteLock

  • ReentrantLock、ReentrantReadWriteLock都是基于AQS(AbstractQueuedSynchronizer)实现的。因为它们有偏心锁和非偏心锁的辨别,因而没间接继承AQS,而是应用外部类去继承,偏心锁和非偏心锁各自实现AQS,ReentrantLock、ReentrantReadWriteLock再借助外部类来实现同步
  • ReentrantLock的应用示例

    ReentrantLock lock = new ReentrantLock();
    if(lock.tryLock()){
        //业务逻辑
        lock.unlock();
    }
  • ReentrantReadWriteLock的应用示例

    public static void main(String[] args) throws Exception {
        ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
        if(lock.readLock().tryLock()){ //读锁
       //业务逻辑
       lock.readLock().unlock();
        }
        if(lock.writeLock().tryLock()){ //写锁
       //业务逻辑
       lock.writeLock().unlock();
        }
    }

    Semaphore实现原理和应用场景

  • Semaphore和ReentrantLock一样,也有偏心和非公平竞争锁的策略,一样也是通过外部类继承AQS来实现同步
  • 艰深解释:假如有一口井,最多有三个人的地位打水。每有一个人打水,则须要占用一个地位。当三个地位全副占满时,第四个人须要打水,则要期待前三个人中一个来到打水位,能力持续获取打水的地位
  • 应用示例

    public static void main(String[] args) throws Exception {
        Semaphore semaphore = new Semaphore(2);
        for (int i = 0; i < 3; i++)
       CompletableFuture.runAsync(() -> {
           try {
               System.out.println(Thread.currentThread().toString() + " start ");
               if(semaphore.tryAcquire(1)){
                   Thread.sleep(1000);
                   semaphore.release(1);
                   System.out.println(Thread.currentThread().toString() + " 无阻塞完结 ");
               }else {
                   System.out.println(Thread.currentThread().toString() + " 被阻塞完结 ");
               }
           } catch (Exception e) {
               throw new RuntimeException(e);
           }
       });
        //保障CompletableFuture 线程被执行,主线程再完结
        Thread.sleep(2000);
    }
    ---------------输入后果------------------
    Thread[ForkJoinPool.commonPool-worker-19,5,main] start 
    Thread[ForkJoinPool.commonPool-worker-5,5,main] start 
    Thread[ForkJoinPool.commonPool-worker-23,5,main] start 
    Thread[ForkJoinPool.commonPool-worker-23,5,main] 被阻塞完结 
    Thread[ForkJoinPool.commonPool-worker-5,5,main] 无阻塞完结 
    Thread[ForkJoinPool.commonPool-worker-19,5,main] 无阻塞完结 
  • 能够看出三个线程,因为信号量设定为2,第三个线程是无奈获取信息胜利的,会打印阻塞完结

    CountDownLatch实现原理和应用场景

  • CountDownLatch也是靠AQS实现的同步操作
  • 艰深解释:玩游戏时,如果主线工作须要靠实现五个小工作,主线工作能力持续进行时。此时能够用CountDownLatch,主线工作阻塞期待,每实现一小工作,就done一次计数,直到五个小工作全副被执行能力触发主线
  • 应用示例

    public static void main(String[] args) throws Exception {
        CountDownLatch count = new CountDownLatch(2);
        for (int i = 0; i < 2; i++)
       CompletableFuture.runAsync(() -> {
           try {
               Thread.sleep(1000);
               System.out.println(" CompletableFuture over ");
               count.countDown();
           } catch (Exception e) {
               throw new RuntimeException(e);
           }
       });
        //期待CompletableFuture线程的实现
        count.await();
        System.out.println(" main over ");
    }
    ---------------输入后果------------------
     CompletableFuture over 
     CompletableFuture over 
     main over 

    CyclicBarrier实现原理和应用场景

  • CyclicBarrier则是靠ReentrantLock lockCondition trip属性来实现同步
  • 艰深解释:CyclicBarrier须要阻塞全副线程到await状态,而后全副线程再全副被唤醒执行。设想有一个栏杆拦住五只羊,须要当五只羊一起站在栏杆时,栏杆才会被拉起,此时所有的羊都能够飞跑出羊圈
  • 应用示例

    public static void main(String[] args) throws Exception {
        CyclicBarrier barrier = new CyclicBarrier(2);
        CompletableFuture.runAsync(()->{
       try {
           System.out.println("CompletableFuture run start-"+ Clock.systemUTC().millis());
           barrier.await(); //须要期待main线程也执行到await状态能力继续执行
           System.out.println("CompletableFuture run over-"+ Clock.systemUTC().millis());
       }catch (Exception e){
           throw new RuntimeException(e);
       }
        });
        Thread.sleep(1000);
        //和CompletableFuture线程互相期待
        barrier.await();
        System.out.println("main run over!");
    }
    ---------------输入后果------------------
    CompletableFuture run start-1609822588881
    main run over!
    CompletableFuture run over-1609822589880

    StampedLock

  • StampedLock不是借助AQS,而是本人外部保护多个状态值,并配合cas实现的
  • StampedLock具备三种模式:写模式、读模式、乐观读模式
  • StampedLock的读写锁能够互相转换

    //获取读锁,自旋获取,返回一个戳值
    public long readLock()
    //尝试加读锁,不胜利返回0
    public long tryReadLock()
    //解锁
    public void unlockRead(long stamp) 
    //获取写锁,自旋获取,返回一个戳值
    public long writeLock()
    //尝试加写锁,不胜利返回0
    public long tryWriteLock()
    //解锁
    public void unlockWrite(long stamp)
    //尝试乐观读读取一个工夫戳,并配合validate办法校验工夫戳的有效性
    public long tryOptimisticRead()
    //验证stamp是否无效
    public boolean validate(long stamp)
  • 应用示例

    public static void main(String[] args) throws Exception {
        StampedLock stampedLock = new StampedLock();
        long stamp = stampedLock.tryOptimisticRead();
        //判断版本号是否失效
        if (!stampedLock.validate(stamp)) {
       //获取读锁,会空转
       stamp = stampedLock.readLock();
       long writeStamp = stampedLock.tryConvertToWriteLock(stamp);
       if (writeStamp != 0) { //胜利转为写锁
           //fixme 业务操作
           stampedLock.unlockWrite(writeStamp);
       } else {
           stampedLock.unlockRead(stamp);
           //尝试获取写读
           stamp = stampedLock.tryWriteLock();
           if (stamp != 0) {
               //fixme 业务操作
               stampedLock.unlockWrite(writeStamp);
           }
       }
        }
    }    

欢送指注释中谬误

参考文章

  • 并发之Striped64(l累加器)

评论

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

这个站点使用 Akismet 来减少垃圾评论。了解你的评论数据如何被处理