本地 Cache 零碎繁难设计
为什么应用缓存?
- 升高数据库的拜访压力。
- 进步查问效率。
- 改善用户体验。
你都理解哪些缓存?
- 数据库内置缓存(DBA 批改)。
- 数据层缓存(由长久层框架决定, 例如 mybatis)
- 业务层缓存(由业务层框架以及第三缓存产品决定: 本地缓存 + 分布式缓存)
- 浏览器缓存(Cache-Control)
设计缓存都应该思考什么问题?
- 存储构造:应用什么构造存储数据?(数组,链表,散列存储 - 哈希存储)
- 淘汰算法:无限容量(LRU,FIFO,…..),不限容量(GC)
- 并发平安:保障线程平安。
- 任务调度:每隔多长时间清理一下缓存。
- 日志记录:是否命中?(命中率)
缓存零碎设计根底
缓存规范定义
package com.cy.java.cache;
/\*\* Cache 接口设计 \*/
public interface Cache {public void putObject(Object key,Object value);
public Object getObject(Object key);
public Object removeObject(Object key);
public void clear();
public int size();}
繁难 Cache 实现
场景利用:
- 存储数据量比拟小(因为没有思考淘汰机制)
- 没有线程共享(一个线程的外部缓存)
- 缓存对象生命周期比拟短
package com.cy.java.cache;
import java.util.HashMap;
import java.util.Map;
/** 负责真正存储数据的一个对象, 将数据存储到一个 map 中 */
public class PerpetualCache implements Cache {
/** 特点:线程不平安,key 不容许反复,不能保障 key 的程序 */
private Map<Object,Object> cache=new HashMap<>();
@Override
public void putObject(Object key, Object value) {cache.put(key, value);
}
@Override
public Object getObject(Object key) {return cache.get(key);
}
@Override
public Object removeObject(Object key) {return cache.remove(key);
}
@Override
public void clear() {cache.clear();
}
@Override
public int size() {return cache.size();
}
@Override
public String toString() {return cache.toString();
}
public static void main(String\[\] args) {Cache cache=new PerpetualCache();
cache.putObject("A", 100);
cache.putObject("B", 200);
cache.putObject("C", 300);
System.out.println(cache);
cache.removeObject("D");
cache.clear();
System.out.println(cache.size());
}
}
构建线程平安 Cache 对象
场景利用:并发环境
package com.cy.java.cache;
/** 线程平安的 cache 对象 */
public class SynchronizedCache implements Cache{
private Cache cache;
public SynchronizedCache(Cache cache) {this.cache=cache;}
@Override
public synchronized void putObject(Object key, Object value) {cache.putObject(key, value);
}
@Override
public synchronized Object getObject(Object key) {
// TODO Auto-generated method stub
return cache.getObject(key);
}
@Override
public synchronized Object removeObject(Object key) {
// TODO Auto-generated method stub
return cache.removeObject(key);
}
@Override
public synchronized void clear() {cache.clear();
}
@Override
public synchronized int size() {return cache.size();
}
@Override
public String toString() {return cache.toString();
}
public static void main(String\[\] args) {
SynchronizedCache cache=
new SynchronizedCache(new PerpetualCache());
cache.putObject("A", 100);
cache.putObject("B", 200);
cache.putObject("C", 300);
System.out.println(cache);
}
}
思考:对于 SynchronizedCache 有什么劣势,劣势?
反对日志记录的 Cache 实现
package com.cy.java.cache;
/** 用于记录命中率的日志 cache*/
public class LoggingCache implements Cache {
private Cache cache;
/** 记录申请次数 */
private int requests;
/** 记录命中次数 */
private int hits;
public LoggingCache(Cache cache) {this.cache=cache;}
@Override
public void putObject(Object key, Object value) {cache.putObject(key, value);
}
@Override
public Object getObject(Object key) {
requests++;
Object obj=cache.getObject(key);
if(obj!=null)hits++;
System.out.println("Cache hit Ratio :"+hits\*1.0/requests);
return obj;
}
@Override
public Object removeObject(Object key) {return cache.removeObject(key);
}
@Override
public void clear() {cache.clear();
}
@Override
public int size() {return cache.size();
}
@Override
public String toString() {
// TODO Auto-generated method stub
return cache.toString();}
public static void main(String\[\] args) {
SynchronizedCache cache=
new SynchronizedCache(
new LoggingCache(new PerpetualCache()));
cache.putObject("A", 100);
cache.putObject("B", 200);
cache.putObject("C", 300);
System.out.println(cache);
cache.getObject("D");
cache.getObject("A");
}
}
思考:你感觉 LoggingCache 记录日志的形式有什么不好的中央?(信息的完整性,同步问题)
LruCache 实现
利用场景:基于 LRU 算法的的根本实现
package com.cy.java.cache;
import java.util.LinkedHashMap;
import java.util.Map;
/** 缓存淘汰策略:LRU(最近起码应用算法)*/
public class LruCache implements Cache {
private Cache cache;
/** 通过此属性记录要移除的数据对象 */
private Object eldestKey;
/** 通过此 map 记录 key 的拜访程序 */
private Map<Object,Object> keyMap;
@SuppressWarnings("serial")
public LruCache(Cache cache,int maxCap) {
this.cache=cache;
//LinkedHashMap 能够记录 key 的增加程序或者拜访程序
this.keyMap=
new LinkedHashMap<Object,Object>(maxCap, 0.75f, true)
{//accessOrder
// 此办法每次执行 keyMap 的 put 操作时调用
@Override
protected boolean removeEldestEntry
(java.util.Map.Entry<Object, Object> eldest) {boolean isFull=size()>maxCap;
if(isFull)eldestKey=eldest.getKey();
return isFull;
}
};
}
@Override
public void putObject(Object key, Object value) {
// 存储数据对象
cache.putObject(key, value);
// 记录 key 的拜访程序,如果曾经满了,就要从 cache 中移除数据
keyMap.put(key, key);// 此时会执行 keyMap 对象的 removeEldestEntry
if(eldestKey!=null) {cache.removeObject(eldestKey);
eldestKey=null;
}
}
@Override
public Object getObject(Object key) {keyMap.get(key);// 记录 key 的拜访程序
return cache.getObject(key);
}
@Override
public Object removeObject(Object key) {return cache.removeObject(key);
}
@Override
public void clear() {cache.clear();
keyMap.clear();}
@Override
public int size() {return cache.size();
}
@Override
public String toString() {return cache.toString();
}
public static void main(String\[\] args) {
SynchronizedCache cache=
new SynchronizedCache(
new LoggingCache(new LruCache(new PerpetualCache(),3)));
cache.putObject("A", 100);
cache.putObject("B", 200);
cache.putObject("C", 300);
cache.getObject("A");
cache.getObject("C");
cache.putObject("D", 400);
cache.putObject("E", 500);
System.out.println(cache);
}
}
设置 Cache 淘汰算法:FIFO 算法
package com.cy.java.cache;
import java.util.Deque;
import java.util.LinkedList;
/**
* FifoCache : 基于 FIFO 算法 (对象满了要按先进先出算法移除对象) 实现 cache 对象
*/
public class FifoCache implements Cache{
/** 借助此对象存储数据 */
private Cache cache;
/** 借助此队列记录 key 的程序 */
private Deque<Object> keyOrders;
/** 通过此变量记录 cache 能够存储的对象个数 */
private int maxCap;
public FifoCache(Cache cache,int maxCap) {
this.cache=cache;
keyOrders=new LinkedList<>();
this.maxCap=maxCap;
}
@Override
public void putObject(Object key, Object value) {//1. 记录 key 的程序(起始就是存储 key,增加在队列最初地位)
keyOrders.addLast(key);
//2. 检测 cache 中数据是否已满,满了则移除。if(keyOrders.size()>maxCap) {Object eldestKey=keyOrders.removeFirst();
cache.removeObject(eldestKey);
}
//3. 放新的对象
cache.putObject(key, value);
}
@Override
public Object getObject(Object key) {return cache.getObject(key);
}
@Override
public Object removeObject(Object key) {Object obj=cache.removeObject(key);
keyOrders.remove(key);
return obj;
}
@Override
public void clear() {cache.clear();
keyOrders.clear();}
@Override
public int size() {return cache.size();
}
@Override
public String toString() {
// TODO Auto-generated method stub
return cache.toString();}
public static void main(String\[\] args) {
Cache cache=
new SynchronizedCache(
new LoggingCache(
new FifoCache(new PerpetualCache(),3)));
cache.putObject("A",100);
cache.putObject("B",200);
cache.putObject("C",300);
cache.getObject("A");
cache.putObject("D",400);
cache.putObject("E",500);
System.out.println(cache);
}
}
序列化 Cache 的实现
场景:存储到 cache 的是对象的字节
package com.cy.java.cache;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
public class SerializedCache implements Cache {
private Cache cache;
public SerializedCache(Cache cache) {this.cache=cache;}
/** 序列化 */
private byte\[\] serialize(Object value) {
//1. 构建流对象
ByteArrayOutputStream bos=null;
ObjectOutputStream oos=null;
try {
//1.2 构建字节数组输入流,此流对象内置可扩容的数组。bos=new ByteArrayOutputStream();
//1.3 构建对象输入流
oos=new ObjectOutputStream(bos);
//2. 对象序列化
oos.writeObject(value);
// 此时对象会以字节的形式写入到字节数组输入流
oos.flush();
return bos.toByteArray();}catch (Exception e) {throw new RuntimeException(e);
}finally {
//3. 敞开流对象
if(bos!=null)
try{bos.close();bos=null;}catch(Exception e) {}
if(oos!=null)
try{oos.close();oos=null;}catch (Exception e2) {}}
}
/** 反序列化 */
public Object deserialize(byte\[\] value) {
//1. 创立流对象
ByteArrayInputStream bis=null;
ObjectInputStream ois=null;
try {
//1.1 构建字节数组输出流,此对象能够间接读取数组中的字节信息
bis=new ByteArrayInputStream(value);
//1.2 构建对象输出流(对象反序列化)
ois=new ObjectInputStream(bis);
//2. 反序列化对象
Object obj=ois.readObject();
return obj;
}catch(Exception e) {throw new RuntimeException(e);
}finally {
//3. 敞开流对象
if(bis!=null)
try{bis.close();bis=null;}catch(Exception e) {}
if(ois!=null)
try{ois.close();ois=null;}catch (Exception e2) {}}
}
@Override
public void putObject(Object key, Object value) {cache.putObject(key, serialize(value));
}
@Override
public Object getObject(Object key) {return deserialize((byte\[\])cache.getObject(key));
}
@Override
public Object removeObject(Object key) {return cache.removeObject(key);
}
@Override
public void clear() {cache.clear();
}
@Override
public int size() {return cache.size();
}
public static void main(String\[\] args) {Cache cache=new SerializedCache(new PerpetualCache());
cache.putObject("A", 200);
cache.putObject("B", 300);
Object v1=cache.getObject("A");
Object v2=cache.getObject("A");
System.out.println(v1==v2);
System.out.println(v1);
System.out.println(v2);
}
}
软件援用 Cache 实现
利用场景:内存不足时淘汰缓存中数据
package com.cy.java.cache;
import java.lang.ref.ReferenceQueue;
import java.lang.ref.SoftReference;
/** 软援用 */
public class SoftCache implements Cache {
private Cache cache;
private ReferenceQueue<Object> garbageOfRequenceQueue=
new ReferenceQueue<>();
public SoftCache(Cache cache) {this.cache=cache;}
@Override
public void putObject(Object key, Object value) {//1. 移除一些垃圾对象(Soft 援用援用的曾经被回收的对象)
removeGarbageObjects();
//2. 将对象存储到 cache(key 不变,Value 为为 soft 援用对象)
cache.putObject(key,
new SoftEntry(key, value, garbageOfRequenceQueue));
}
@Override
public Object getObject(Object key) {
//1. 基于 key 获取软援用对象并判断
SoftEntry softEntry=(SoftEntry)cache.getObject(key);
if(softEntry==null)return null;
//2. 基于软援用对象获取它援用的对象并判断
Object target = softEntry.get();
if(target==null)cache.removeObject(key);
return target;
}
@Override
public Object removeObject(Object key) {//1. 移除一些垃圾对象(Soft 援用援用的曾经被回收的对象)
removeGarbageObjects();
//2. 从 cache 中移除对象
Object removedObj=cache.removeObject(key);
return removedObj;
}
@Override
public void clear() {//1. 移除一些垃圾对象(Soft 援用援用的曾经被回收的对象)
removeGarbageObjects();
//2. 清空 cache
cache.clear();}
@Override
public int size() {removeGarbageObjects();
return cache.size();}
private void removeGarbageObjects() {
SoftEntry softEntry=null;
//1. 从援用队列中获取曾经被 GC 的一些对象的援用
while((softEntry=
(SoftEntry)garbageOfRequenceQueue.poll())!=null){
//softEntry 不为 null 示意 softEntry 援用的对象曾经被移除
//2. 从 cache 中将对象援用移除。cache.removeObject(softEntry.key);
}
}
/\*\* 定义软援用类型 \*/
private static class SoftEntry extends SoftReference<Object\>{
private final Object key;
public SoftEntry(Object key,
Object referent, ReferenceQueue<? super Object> rQueue) {super(referent, rQueue);
this.key=key;
}
}
@Override
public String toString() {
// TODO Auto-generated method stub
return cache.toString();}
public static void main(String\[\] args) {Cache cache=new SoftCache(new PerpetualCache());
cache.putObject("A", new byte\[1024\*1024\]);
cache.putObject("B", new byte\[1024\*1024\]);
cache.putObject("C", new byte\[1024\*1024\]);
cache.putObject("D", new byte\[1024\*1024\]);
cache.putObject("E", new byte\[1024\*1024\]);
System.out.println(cache.size());
System.out.println(cache);
}
}
弱 Cache 对象实现
利用场景:GC 触发革除缓存对象
package com.cy.java.cache;
import java.lang.ref.ReferenceQueue;
import java.lang.ref.WeakReference;
/\*\* 弱援用 \*/
public class WeakCache implements Cache {
private Cache cache;
private ReferenceQueue<Object> garbageOfRequenceQueue=
new ReferenceQueue<>();
public WeakCache(Cache cache) {this.cache=cache;}
@Override
public void putObject(Object key, Object value) {//1. 移除一些垃圾对象(Soft 援用援用的曾经被回收的对象)
removeGarbageObjects();
//2. 将对象存储到 cache(key 不变,Value 为为 soft 援用对象)
cache.putObject(key,
new WeakEntry(key, value, garbageOfRequenceQueue));
}
@Override
public Object getObject(Object key) {
//1. 基于 key 获取软援用对象并判断
WeakEntry softEntry=(WeakEntry)cache.getObject(key);
if(softEntry==null)return null;
//2. 基于软援用对象获取它援用的对象并判断
Object target = softEntry.get();
if(target==null)cache.removeObject(key);
return target;
}
@Override
public Object removeObject(Object key) {//1. 移除一些垃圾对象(Soft 援用援用的曾经被回收的对象)
removeGarbageObjects();
//2. 从 cache 中移除对象
Object removedObj=cache.removeObject(key);
return removedObj;
}
@Override
public void clear() {//1. 移除一些垃圾对象(Soft 援用援用的曾经被回收的对象)
removeGarbageObjects();
//2. 清空 cache
cache.clear();}
@Override
public int size() {removeGarbageObjects();
return cache.size();}
private void removeGarbageObjects() {
WeakEntry softEntry=null;
//1. 从援用队列中获取曾经被 GC 的一些对象的援用
while((softEntry=
(WeakEntry)garbageOfRequenceQueue.poll())!=null) {
//softEntry 不为 null 示意 softEntry 援用的对象曾经被移除
//2. 从 cache 中将对象援用移除。cache.removeObject(softEntry.key);
}
}
/** 定义软援用类型 */
private static class WeakEntry extends WeakReference<Object\>{
private final Object key;
public WeakEntry(Object key,
Object referent, ReferenceQueue<? super Object> rQueue) {super(referent, rQueue);
this.key=key;
}
}
@Override
public String toString() {return cache.toString();
}
public static void main(String\[\] args) {Cache cache=new WeakCache(new PerpetualCache());
cache.putObject("A", new byte\[1024\*1024\]);
cache.putObject("B", new byte\[1024\*1024\]);
cache.putObject("C", new byte\[1024\*1024\]);
cache.putObject("D", new byte\[1024\*1024\]);
cache.putObject("E", new byte\[1024\*1024\]);
cache.putObject("F", new byte\[1024\*1024\]);
cache.putObject("G", new byte\[1024\*1024\]);
System.out.println(cache.size());
System.out.println(cache);
}
}
缓存零碎设计进阶
缓存利用需要降级
- 缓存零碎既要保障线程平安又要保障性能。
- 缓存日志的记录要写到文件,而且是异步写
- 向缓存中写数据时要进步序列化性能。
缓存对象读写锁利用
package com.cy.java.cache;
import java.util.concurrent.locks.ReentrantReadWriteLock;
/**
* 构建线程平安对象,基于 ReentrantReadWriteLock 对象实现读写锁利用。* @author qilei
*/
public class ReentrantLockCache implements Cache {
private Cache cache;
/**
* 此对象提供了读锁,写锁利用形式.
* 1)写锁:排他锁
* 2)读锁:共享锁
* 阐明:读写不能同时执行。*/
private final ReentrantReadWriteLock readWriteLock =
new ReentrantReadWriteLock();
public ReentrantLockCache(Cache cache) {
this.cache=cache;
// TODO Auto-generated constructor stub
}
@Override
public void putObject(Object key, Object value) {readWriteLock.writeLock().lock();
try {cache.putObject(key, value);
}finally {readWriteLock.writeLock().unlock();}
}
@Override
public Object getObject(Object key) {readWriteLock.readLock().lock();
try {Object object=cache.getObject(key);
return object;
}finally{readWriteLock.readLock().unlock();}
}
@Override
public Object removeObject(Object key) {readWriteLock.writeLock().lock();
try {Object object=cache.removeObject(key);
return object;
}finally{readWriteLock.writeLock().unlock();}
}
@Override
public void clear() {readWriteLock.writeLock().lock();
try {cache.clear();
}finally{readWriteLock.writeLock().unlock();}
}
@Override
public int size() {readWriteLock.readLock().lock();
try {int size=cache.size();
return size;
}finally{readWriteLock.readLock().unlock();}
}
}
异步日志 Cache 实现
第一步:增加依赖
` <dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.2.3</version>
</dependency> `
第二步:增加配置文件 logback.xml (参考我的项目代码)
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<logger name="com.cy" level="TRACE" />
<appender name="FILE"
class\="ch.qos.logback.core.rolling.RollingFileAppender"\>
<rollingPolicy
class\="ch.qos.logback.core.rolling.TimeBasedRollingPolicy"\>
<!-- 文件门路, 定义了日志的切分形式 ---- 把每一天的日志归档到一个文件中, 以避免日志填满整个磁盘空间 -->
<fileNamePattern>logs/context-log.%d{yyyy-MM-dd}.log
</fileNamePattern>
<!-- 只保留最近 30 天的日志 -->
<maxHistory>30</maxHistory>
</rollingPolicy>
<encoder charset="UTF-8"\>
<pattern>\[%-5level\] %date --%thread-- \[%logger\] %msg %n</pattern>
</encoder>
</appender>
<appender name="ASYNC\_FILE"
class\="ch.qos.logback.classic.AsyncAppender"\>
<discardingThreshold>0</discardingThreshold>
<queueSize>256</queueSize>
<appender-ref ref="FILE" />
</appender>
<root level="debug"\>
<appender-ref ref="ASYNC\_FILE" />
</root>
</configuration>
第三步:构建 AsyncLoggingCache
package com.cy.java.cache;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* 通过此对象异步记录查问操作的命中率
* 1)抉择日志库
* 2)执行异步写操作。*/
public class AsyncLoggingCache implements Cache {
// 日志门面利用
private static Logger log=LoggerFactory.getLogger(LoggingCache.class);
private Cache cache;
/** 示意申请次数 */
private int requests;
/** 命中次数(命中示意从缓存中取到数据了)*/
private int hits;
public AsyncLoggingCache(Cache cache) {this.cache=cache;}
@Override
public void putObject(Object key, Object value) {cache.putObject(key, value);
}
@Override
public Object getObject(Object key) {
requests++;
Object obj=cache.getObject(key);
if(obj!=null)hits++;
// 记录日志耗时
log.info("Cache hit Ratio:{}",hits\*1.0/requests);
return obj;
}
@Override
public Object removeObject(Object key) {return cache.removeObject(key);
}
@Override
public void clear() {cache.clear();
}
@Override
public int size() {return cache.size();
}
public static void main(String\[\] args) {
Cache cache=
new AsyncLoggingCache(new PerpetualCache());
cache.putObject("A", 100);
cache.putObject("B", 200);
cache.putObject("C", 300);
cache.putObject("D", 400);
//System.out.println(cache);
cache.getObject("E");
cache.getObject("A");
cache.getObject("B");
}
}
Kryo 构建序列化 Cache
第一步:增加依赖
<dependency>
<groupId>com.esotericsoftware</groupId>
<artifactId>kryo</artifactId>
<version>5.0.0-RC5</version>
</dependency>
第二步:构建我的项目工具类
public class KryoUtils {
/**
* 多线程并发执行时,可能会呈现线程不平安,具体起因是什么?* 1)多个线程的并发
* 2)多个线程有数据共享
* 3)多个线程在共享数据集上的操作不是原子操作
*
* 剖析:当呈现了线程不平安,如何进行批改来保障线程平安
* 1)将多线程改为单线程。* 2)勾销共享 (例如在以后利用中咱们一个线程一个 Kryo 对象)
* 3)加锁 +CAS
*
* ThreadLocal 提供了这样的一种机制:* 1)能够将对象绑定到以后线程(其实是将对象存储到以后线程的 map 中)* 2)能够从以后线程获取绑定的对象(从以后线程的 map 中获取对象)
*/
static private final ThreadLocal<Kryo> kryos = new ThreadLocal<Kryo>() {protected Kryo initialValue() {Kryo kryo = new Kryo();
// Configure the Kryo instance.
kryo.setRegistrationRequired(false);
//....
return kryo;
};
};
public static Object deserialize(byte\[\] array){Kryo kryo=kryos.get();
Input input = new Input(new ByteArrayInputStream(array));
Object obj=kryo.readClassAndObject(input);
return obj;
}
public static byte\[\] serialize(Object object){
// 从以后线程获取 kryo 对象,以后线程没有会调用 ThreadLocal 的 initialValue 办法创建对象并绑定线程
Kryo kryo=kryos.get();
ByteArrayOutputStream bos=new ByteArrayOutputStream();
Output output = new Output(bos);
kryo.writeClassAndObject(output, object);
output.close();
return bos.toByteArray();}
}
> 构建高性能序列化 Cache
public class KryoSerializedCache implements Cache {
private Cache cache;
public KryoSerializedCache(Cache cache) {this.cache=cache;}
@Override
public void putObject(Object key, Object value) {
//1. 将对象序列化
byte\[\] array=KryoUtils.serialize(value);
//2. 将序列化后的字节数组援用存储到 cache
cache.putObject(key,array);
}
@Override
public Object getObject(Object key) {
//1. 基于 key 获取缓存中的字节数组援用
byte\[\] array=(byte\[\])cache.getObject(key);
//2. 将字节数组反序列化为对象
return KryoUtils.deserialize(array);
}
@Override
public Object removeObject(Object key) {return KryoUtils.deserialize((byte\[\])cache.removeObject(key));
}
@Override
public void clear() {cache.clear();
}
@Override
public int size() {return cache.size();
}
public static void main(String\[\] args) {Cache cache=new KryoSerializedCache(new PerpetualCache());
cache.putObject("A", 500);
Object a1=cache.getObject("A");
Object a2=cache.getObject("A");
System.out.println("a1="+a1);
System.out.println("a2="+a2);
System.out.println(a1==a2);//false
}
}