关于java:百万数据秒级导出

42次阅读

共计 2322 个字符,预计需要花费 6 分钟才能阅读完成。

我的项目模仿一百万的数据导出,要求 10s 内实现全副数据导出, 我的项目应用 springboot + mysql + mybatis + poi。
我的项目核心思想 数据分页 + 线程池
采纳线程池和数据分页的起因:在于数据导出波及 IO 操作,不采纳线程池的话,串行耗时较长,同时数据量较大,不对数据进行分页解决,可能会产生内存溢出。

数据起源:百万数据插入

用户数据库:

CREATE TABLE `user` (`id` int(11) NOT NULL,
  `name` varchar(45) DEFAULT NULL,
  `createdTime` datetime DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  `updatedTime` datetime DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  PRIMARY KEY (`id`),
  KEY `index` (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='用户测试表';

线程池数据量的设计:合理配置线程池数量
因为数据导出波及大量 IO, 故线 程数量 = 2 * cpu 核数

 final int nThreads = Runtime.getRuntime().availableProcessors();
 ExecutorService pool = Executors.newFixedThreadPool(nThreads << 1);

同时,通过数据库查问语句增加 where 条件,缩小数据深度分页带来的性能损耗问题

<select id="selectPage" resultType="com.high.concurrency.currency02.domain.User">
    select id, `name` from user where  id > #{param1} limit 0, #{param2}
</select>

除此之外,数据库的优化,地址:MySQL 外围参数优化

package com.high.concurrency.currency02.service.impl;

import com.high.concurrency.currency02.domain.User;
import com.high.concurrency.currency02.mapper.UserMapper;
import com.high.concurrency.currency02.service.IUserService;
import com.high.concurrency.currency02.util.ExcelUtil;
import com.high.concurrency.currency02.util.PageUtil;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import java.util.List;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

@Service
public class UserServiceImpl implements IUserService {
    @Autowired
    private UserMapper userMapper;
    @Override
    public String exportData() {
        // 获取可用的线程数
        final int nThreads = Runtime.getRuntime().availableProcessors();
        ExecutorService pool = Executors.newFixedThreadPool(nThreads << 1);
        int pageSize = PageUtil.pageSize;
        // 获取数据总量
        Integer count = userMapper.getCount();
        // 获取总页数
        int totalPageCount= PageUtil.getTotalPageCount(count);
        // 开始统计工夫
        long start=System.currentTimeMillis();
        int maxId = 0;
        for(int currentPageNum = 0; currentPageNum < totalPageCount; currentPageNum++) {List<User> userList = userMapper.selectPage(maxId, pageSize);
            maxId = userList.get(userList.size() - 1).getId();
            int finalCurrentPageNum = currentPageNum;

            Runnable run = new Runnable() {
                @Override
                public void run() {ExcelUtil.createExcel(finalCurrentPageNum, userList);
                    if(finalCurrentPageNum == (totalPageCount-1)){System.out.println("export data to excel, it  has spent" +(System.currentTimeMillis()-start)+"ms");
                    }
                }
            };
            pool.execute(run);
        }
        return "ok";
    }
}

操作成果如下:

代码地址:github

正文完
 0