先温习下 Hystrix 的整体流程
- 结构一个 HystrixCommand 或 HystrixObservableCommand 对象,用于封装申请,并在构造方法配置申请被执行须要的参数;
- 执行命令,Hystrix 提供了 4 种执行命令的办法
- 判断是否应用缓存响应申请,若启用了缓存,且缓存可用,间接应用缓存响应申请。Hystrix 反对申请缓存,但须要用户自定义启动;
- 判断熔断器是否关上,如果关上,执行第 8 步;
- 判断线程池 / 队列 / 信号量是否已满,已满则执行第 8 步;
- 执行 HystrixObservableCommand.construct()或 HystrixCommand.run(),如果执行失败或者超时,执行第 8 步;否则,跳到第 9 步;
- 统计熔断器监控指标;
- 走 Fallback 备用逻辑
- 返回申请响应
一,execute 办法剖析
承接上篇,在 HystrixCommandAspect 这个切面里会创立 HystrixInvokable 对象,进而执行。
Object result;
try {if (!metaHolder.isObservable()) {result = CommandExecutor.execute(invokable, executionType, metaHolder);
} else {result = executeObservable(invokable, executionType, metaHolder);
}
} catch (HystrixBadRequestException e) {throw e.getCause() != null ? e.getCause() : e;} catch (HystrixRuntimeException e) {throw hystrixRuntimeExceptionToThrowable(metaHolder, e);
}
这里就来剖析下 execute 的流程。Hystrix 是反对同步,异步,察看这个三个模式的,咱们只看同步,调用链路是:HystrixCommand.execute() -> queue() -> toObservable()
public Observable<R> toObservable() {
.... 一些 action 的定义 ....
final Func0<Observable<R>> applyHystrixSemantics = new Func0<Observable<R>>() {public Observable<R> call() {if(this.commandState.get()).equals(AbstractCommand.CommandState.UNSUBSCRIBED)){return Observable.never()
}else{applyHystrixSemantics(AbstractCommand.this);
}
}
};
...
return Observable.defer(new Func0<Observable<R>>() {public Observable<R> call() {
... 判断是否开启缓存,对应上整体流程的 3 步...
boolean requestCacheEnabled = AbstractCommand.this.isRequestCachingEnabled();
String cacheKey = AbstractCommand.this.getCacheKey();
if (requestCacheEnabled) {
// 拿去缓存,如果存在缓存的话,间接返回
HystrixCommandResponseFromCache<R> fromCache = (HystrixCommandResponseFromCache<R>) requestCache.get(cacheKey);
if (fromCache != null) {
isResponseFromCache = true;
return handleRequestCacheHitAndEmitValues(fromCache, _cmd);
}
}
Observable<R> hystrixObservable = Observable.defer(applyHystrixSemantics).map(wrapWithAllOnNextHooks);
Observable afterCache;
if (requestCacheEnabled && cacheKey != null) {... 缓存后续的一些判断.....} else {afterCache = hystrixObservable;}
return afterCache.doOnTerminate(terminateCommandCleanup)
.doOnUnsubscribe(unsubscribeCommandCleanup)
.doOnCompleted(fireOnCompletedHook);
}
});
}
call 外面的办法主要用途:
- 判断一下是否开启了缓存,如果开启了就间接返回
- 没有开启或者还没有缓存的时候就执行 Observable.defer(applyHystrixSemantics),执行后返回。
熔断器敞开或关上的判断,这对应结尾整体流程的第 4 步。
private Observable<R> applyHystrixSemantics(AbstractCommand<R> _cmd) {this.executionHook.onStart(_cmd);
// 判读是不是熔断了。if (this.circuitBreaker.allowRequest()) {
/**
* 如果应用的是信号量返回 TryableSemaphoreActual,不是返回
*TryableSemaphoreNoOp,TryableSemaphoreNoOp.tryAcquire()永远都是返回 true
*/
final TryableSemaphore executionSemaphore = getExecutionSemaphore();。。。// 信号量的管制
if (executionSemaphore.tryAccaquire()) {
try {this.executionResult = this.executionResult.setInvocationStartTime(System.currentTimeMillis());
// 如果都胜利的话会执行 executeCommandAndObserve
return this.executeCommandAndObserve(_cmd)
.doOnError(markExceptionThrown)
.doOnTerminate(singleSemaphoreRelease)
.doOnUnsubscribe(singleSemaphoreRelease);
} catch (RuntimeException var7) {return Observable.error(var7);
}
} else {return this.handleSemaphoreRejectionViaFallback();
}
} else {// 执行熔断后的逻辑
return this.handleShortCircuitViaFallback();}
}
二,熔断器降级剖析
接着剖析this.circuitBreaker.allowRequest()
static class HystrixCircuitBreakerImpl implements HystrixCircuitBreaker {
private final HystrixCommandProperties properties;
private final HystrixCommandMetrics metrics;
// 熔断器是否开启
/* track whether this circuit is open/closed at any given point in time (default to false==closed) */
private AtomicBoolean circuitOpen = new AtomicBoolean(false);
/* when the circuit was marked open or was last allowed to try a 'singleTest' */
private AtomicLong circuitOpenedOrLastTestedTime = new AtomicLong();
protected HystrixCircuitBreakerImpl(HystrixCommandKey key, HystrixCommandGroupKey commandGroup, HystrixCommandProperties properties, HystrixCommandMetrics metrics) {
this.properties = properties;
this.metrics = metrics;
}
// 当半开半闭状态下,如果这次申请胜利而了,则把熔断器设为 false, 且让统计指标 reset
public void markSuccess() {if (circuitOpen.get()) {if (circuitOpen.compareAndSet(true, false)) {
//win the thread race to reset metrics
//Unsubscribe from the current stream to reset the health counts stream. This only affects the health counts view,
//and all other metric consumers are unaffected by the reset
metrics.resetStream();}
}
}
@Override
public boolean allowRequest() {
// 判断是否强制关上熔断器
if (properties.circuitBreakerForceOpen().get()) {return false;}
// 是否强制敞开熔断器
if (properties.circuitBreakerForceClosed().get()) {isOpen();
return true;
}
return !isOpen() || allowSingleTest();
}
public boolean allowSingleTest() {long timeCircuitOpenedOrWasLastTested = circuitOpenedOrLastTestedTime.get();
// 1) if the circuit is open
// 2) and it's been longer than'sleepWindow' since we opened the circuit
// 熔断器是开启的,且以后工夫比开启熔断器的工夫加上 sleepWindow 工夫还要长
if (circuitOpen.get() && System.currentTimeMillis() > timeCircuitOpenedOrWasLastTested + properties.circuitBreakerSleepWindowInMilliseconds().get()) {
// We push the 'circuitOpenedTime' ahead by 'sleepWindow' since we have allowed one request to try.
// If it succeeds the circuit will be closed, otherwise another singleTest will be allowed at the end of the 'sleepWindow'.
// 设置以后工夫到 timeCircuitOpenedOrWasLastTested,// 如果半开半闭的状态下,如果这次申请胜利了则会调用 markSuccess,让熔断器状态设为 false,
// 如果不胜利,就不须要了。// 案例:半开半合状态下,熔断开启工夫为 00:00:00,sleepWindow 为 10s,如果 00:00:15 秒的时候调用,如果调用失败,// 在 00:00:15 至 00:00:25 秒这个区间都是熔断的,if (circuitOpenedOrLastTestedTime.compareAndSet(timeCircuitOpenedOrWasLastTested, System.currentTimeMillis())) {
// if this returns true that means we set the time so we'll return true to allow the singleTest
// if it returned false it means another thread raced us and allowed the singleTest before we did
return true;
}
}
return false;
}
@Override
public boolean isOpen() {
// 判断是否熔断了,circuitOpen 是熔断的状态,true 为熔断,false 为不熔断
if (circuitOpen.get()) {return true;}
// 获取统计到的指标信息
HealthCounts health = metrics.getHealthCounts();
// 一个工夫窗口 (默认 10s 钟) 总申请次数是否大于 circuitBreakerRequestVolumeThreshold 默认为 20s
if (health.getTotalRequests() < properties.circuitBreakerRequestVolumeThreshold().get()) {return false;}
// 错误率 (总谬误次数 / 总申请次数) 小于 circuitBreakerErrorThresholdPercentage(默认 50%)
if (health.getErrorPercentage() < properties.circuitBreakerErrorThresholdPercentage().get()) {return false;} else {
// 反之,熔断状态将从 CLOSED 变为 OPEN,且 circuitOpened==> 以后工夫戳
if (circuitOpen.compareAndSet(false, true)) {
// 并且把以后工夫设置到 circuitOpenedOrLastTestedTime,可待前面的工夫的比照
circuitOpenedOrLastTestedTime.set(System.currentTimeMillis());
return true;
} else {return true;}
}
}
}
- 判断是否强制开启熔断器和强制敞开熔断器
- 先判断熔断是否开启,而后判断是否须要熔断,如果须要熔断则共性熔断状态并重置熔断工夫为以后工夫。熔断的条件是:
1)工夫窗口内 (默认 10s 钟) 总申请次数大于 20 次
2) 工夫窗口内 (默认 10s 钟) 失败率大于 50% - 熔断的状况下就执行 allowSingleTest,让开启熔断的都能往下执行。能够执行的条件是:
1)circuitOpen.get() 为 true,确保是一般的熔断,而不是强制熔断
2) 以后工夫比开启熔断器的工夫加上 sleepWindow 工夫还要长 - 在半开半必的状态下申请胜利了,再调用 markSuccess()办法,从而将熔断器敞开并从新统计各项指标
allowSingleTest 返回 true 的简略的能够叫为半开半闭状态
三,信号量隔离的剖析
这个对应整体流程里的第 5 步
/* package */static class TryableSemaphoreActual implements TryableSemaphore {
protected final HystrixProperty<Integer> numberOfPermits;
private final AtomicInteger count = new AtomicInteger(0);
public TryableSemaphoreActual(HystrixProperty<Integer> numberOfPermits) {this.numberOfPermits = numberOfPermits;}
@Override
public boolean tryAcquire() {int currentCount = count.incrementAndGet();
if (currentCount > numberOfPermits.get()) {count.decrementAndGet();
return false;
} else {return true;}
}
}
/* package */static class TryableSemaphoreNoOp implements TryableSemaphore {public static final TryableSemaphore DEFAULT = new TryableSemaphoreNoOp();
@Override
public boolean tryAcquire() {return true;}
}
开启了信号量隔离,TryableSemaphoreActual 会把信号量减少 1,如果 currentCount > numberOfPermits.get()的时候就返回 false, 信号量降级。
没有开启信号量隔离,TryableSemaphoreNoOp.tryAcquire()永远都是返回 true。
如果没熔断,没应用信号量,则会往下执行 executeCommandAndObserve。
private Observable<R> executeCommandAndObserve(final AbstractCommand<R> _cmd) {final HystrixRequestContext currentRequestContext = HystrixRequestContext.getContextForCurrentThread();
....
Observable<R> execution;
// 判断是否超时隔离
if (properties.executionTimeoutEnabled().get()) {execution = executeCommandWithSpecifiedIsolation(_cmd)
.lift(new HystrixObservableTimeoutOperator<R>(_cmd));
} else {execution = executeCommandWithSpecifiedIsolation(_cmd);
}
//markEmits,markOnCompleted,handleFallback,setRequestContext 都是匿名外部类,都在这个办法里定义了,return execution.doOnNext(markEmits)
.doOnCompleted(markOnCompleted)
.onErrorResumeNext(handleFallback)
.doOnEach(setRequestContext);
}
四,超时隔离剖析
private static class HystrixObservableTimeoutOperator<R> implements Operator<R, R> {
final AbstractCommand<R> originalCommand;
public HystrixObservableTimeoutOperator(final AbstractCommand<R> originalCommand) {this.originalCommand = originalCommand;}
@Override
public Subscriber<? super R> call(final Subscriber<? super R> child) {final CompositeSubscription s = new CompositeSubscription();
// if the child unsubscribes we unsubscribe our parent as well
child.add(s);
// 超时的时候抛出 new HystrixTimeoutException()
final HystrixContextRunnable timeoutRunnable = new HystrixContextRunnable(originalCommand.concurrencyStrategy, new Runnable() {
@Override
public void run() {child.onError(new HystrixTimeoutException());
}
});
// 设置定时调度
TimerListener listener = new TimerListener() {
// 定时触发的办法
@Override
public void tick() {
// 把状态从未执行设为 timeout
if (originalCommand.isCommandTimedOut.compareAndSet(TimedOutStatus.NOT_EXECUTED, TimedOutStatus.TIMED_OUT)) {
// report timeout failure
originalCommand.eventNotifier.markEvent(HystrixEventType.TIMEOUT, originalCommand.commandKey);
// shut down the original request
s.unsubscribe();
timeoutRunnable.run();}
}
// 获取定时的的工夫
@Override
public int getIntervalTimeInMilliseconds() {return originalCommand.properties.executionTimeoutInMilliseconds().get();}
};
final Reference<TimerListener> tl = HystrixTimer.getInstance().addTimerListener(listener);
// set externally so execute/queue can see this
originalCommand.timeoutTimer.set(tl);
/**
* If this subscriber receives values it means the parent succeeded/completed
*/
Subscriber<R> parent = new Subscriber<R>() {...};
// if s is unsubscribed we want to unsubscribe the parent
s.add(parent);
return parent;
}
}
public Reference<TimerListener> addTimerListener(final TimerListener listener) {startThreadIfNeeded();
// add the listener
Runnable r = new Runnable() {
@Override
public void run() {
try {listener.tick();
} catch (Exception e) {logger.error("Failed while ticking TimerListener", e);
}
}
};
//getIntervalTimeInMilliseconds 获取定时工夫
ScheduledFuture<?> f = executor.get().getThreadPool().scheduleAtFixedRate(r, listener.getIntervalTimeInMilliseconds(), listener.getIntervalTimeInMilliseconds(), TimeUnit.MILLISECONDS);
return new TimerReference(listener, f);
}
次要逻辑,定义了一个定时器 TimerListener,外面定时的工夫就是咱们设置的 @HystrixCommand 的超时的工夫。如果超时了执行:
- 把状态从 NOT_EXECUTED 设置为 TIMED_OUT
- 发送 TIMEOUT 事件
- s.unsubscribe()勾销事件订阅
- timeoutRunnable.run(); 抛出 timeoutRunnable 异样
演绎一下就是设置了一个定时器,定时工夫是咱们设置的超时工夫,如果定时工夫到了,咱们就扭转相应的状态,发送相应的外部事件,勾销 Obserable 的订阅,抛出异样,而做到一个超时的隔离。
再看看 executeCommandWithSpecifiedIsolation 办法
private Observable<R> executeCommandWithSpecifiedIsolation(final AbstractCommand<R> _cmd) {if (properties.executionIsolationStrategy().get() == ExecutionIsolationStrategy.THREAD) {// mark that we are executing in a thread (even if we end up being rejected we still were a THREAD execution and not SEMAPHORE)
return Observable.defer(new Func0<Observable<R>>() {
@Override
public Observable<R> call() {
...
metrics.markCommandStart(commandKey, threadPoolKey, ExecutionIsolationStrategy.THREAD);
if (isCommandTimedOut.get() == TimedOutStatus.TIMED_OUT) {
...
return Observable.error(new RuntimeException("timed out before executing run()"));
}
if (threadState.compareAndSet(ThreadState.NOT_USING_THREAD, ThreadState.STARTED)) {
....
try {executionHook.onThreadStart(_cmd);
executionHook.onRunStart(_cmd);
executionHook.onExecutionStart(_cmd);
// 最初执行这个
return getUserExecutionObservable(_cmd);
} catch (Throwable ex) {return Observable.error(ex);
}
} else {
//command has already been unsubscribed, so return immediately
return Observable.error(new RuntimeException("unsubscribed before executing run()"));
}
}
}).doOnTerminate(...).doOnUnsubscribe(...)
// 这个办法是用于指定一个线程池去执行咱们被观察者 observable 触发时的办法
.subscribeOn(threadPool.getScheduler(new Func0<Boolean>() {
@Override
public Boolean call() {return properties.executionIsolationThreadInterruptOnTimeout().get() && _cmd.isCommandTimedOut.get() == TimedOutStatus.TIMED_OUT;
}
}));
} else {...}
}
五,指定线程池执行办法
在 executeCommandWithSpecifiedIsolation 这个办法里的 subscribeOn 调用用于指定一个线程池去执行咱们被观察者 observable 触发时的办法
/* package */static class HystrixThreadPoolDefault implements HystrixThreadPool {private static final Logger logger = LoggerFactory.getLogger(HystrixThreadPoolDefault.class);
private final HystrixThreadPoolProperties properties;
private final BlockingQueue<Runnable> queue;
private final ThreadPoolExecutor threadPool;
private final HystrixThreadPoolMetrics metrics;
private final int queueSize;
...
@Override
public Scheduler getScheduler(Func0<Boolean> shouldInterruptThread) {touchConfig();
return new HystrixContextScheduler(HystrixPlugins.getInstance().getConcurrencyStrategy(), this, shouldInterruptThread);
}
// 动静调整线程池的大小
// allow us to change things via fast-properties by setting it each time
private void touchConfig() {final int dynamicCoreSize = properties.coreSize().get();
final int configuredMaximumSize = properties.maximumSize().get();
int dynamicMaximumSize = properties.actualMaximumSize();
final boolean allowSizesToDiverge = properties.getAllowMaximumSizeToDivergeFromCoreSize().get();
boolean maxTooLow = false;
if (allowSizesToDiverge && configuredMaximumSize < dynamicCoreSize) {
dynamicMaximumSize = dynamicCoreSize;
maxTooLow = true;
}
// In JDK 6, setCorePoolSize and setMaximumPoolSize will execute a lock operation. Avoid them if the pool size is not changed.
if (threadPool.getCorePoolSize() != dynamicCoreSize || (allowSizesToDiverge && threadPool.getMaximumPoolSize() != dynamicMaximumSize)) {
...
threadPool.setCorePoolSize(dynamicCoreSize);
threadPool.setMaximumPoolSize(dynamicMaximumSize);
}
threadPool.setKeepAliveTime(properties.keepAliveTimeMinutes().get(), TimeUnit.MINUTES);
}
}
public class HystrixContextScheduler extends Scheduler {
private final HystrixConcurrencyStrategy concurrencyStrategy;
private final Scheduler actualScheduler;
private final HystrixThreadPool threadPool;。。。public HystrixContextScheduler(HystrixConcurrencyStrategy concurrencyStrategy, HystrixThreadPool threadPool, Func0<Boolean> shouldInterruptThread) {
this.concurrencyStrategy = concurrencyStrategy;
this.threadPool = threadPool;
this.actualScheduler = new ThreadPoolScheduler(threadPool, shouldInterruptThread);
}
@Override
public Worker createWorker() {
// 构建一个默认的 Worker, 这里的 actualScheduler 就是 ThreadPoolScheduler
//actualScheduler.createWorker()就是 ThreadPoolWorker
return new HystrixContextSchedulerWorker(actualScheduler.createWorker());
}
//HystrixContextSchedulerWorker 类
private class HystrixContextSchedulerWorker extends Worker {
private final Worker worker;
private HystrixContextSchedulerWorker(Worker actualWorker) {this.worker = actualWorker;}
...
@Override
public Subscription schedule(Action0 action) {if (threadPool != null) {if (!threadPool.isQueueSpaceAvailable()) {throw new RejectedExecutionException("Rejected command because thread-pool queueSize is at rejection threshold.");
}
}
// 这里的 worker 其实就是 ThreadPoolWorker
return worker.schedule(new HystrixContexSchedulerAction(concurrencyStrategy, action));
}
}
//ThreadPoolScheduler 类
private static class ThreadPoolScheduler extends Scheduler {
private final HystrixThreadPool threadPool;
private final Func0<Boolean> shouldInterruptThread;
public ThreadPoolScheduler(HystrixThreadPool threadPool, Func0<Boolean> shouldInterruptThread) {
this.threadPool = threadPool;
this.shouldInterruptThread = shouldInterruptThread;
}
@Override
public Worker createWorker() {
// 默认的 worker 为:ThreadPoolWorker
return new ThreadPoolWorker(threadPool, shouldInterruptThread);
}
}
//ThreadPoolWorker 类
private static class ThreadPoolWorker extends Worker {
private final HystrixThreadPool threadPool;
private final CompositeSubscription subscription = new CompositeSubscription();
private final Func0<Boolean> shouldInterruptThread;
public ThreadPoolWorker(HystrixThreadPool threadPool, Func0<Boolean> shouldInterruptThread) {
this.threadPool = threadPool;
this.shouldInterruptThread = shouldInterruptThread;
}
...
@Override
public Subscription schedule(final Action0 action) {if (subscription.isUnsubscribed()) {
// don't schedule, we are unsubscribed
return Subscriptions.unsubscribed();}
// This is internal RxJava API but it is too useful.
ScheduledAction sa = new ScheduledAction(action);
subscription.add(sa);
sa.addParent(subscription);
// 获取线程池
ThreadPoolExecutor executor = (ThreadPoolExecutor) threadPool.getExecutor();
// 将包装后的 HystrixCommand submit 到线程池,而后返回 FutureTask
FutureTask<?> f = (FutureTask<?>) executor.submit(sa);
sa.add(new FutureCompleterWithConfigurableInterrupt(f, shouldInterruptThread, executor));
return sa;
}
...
}
}
几个外部类的作用:
- HystrixContextSchedulerWorker: 对外提供 schedule()办法,这里会判断线程池队列是否曾经满,如果满了这会抛出异样:Rejected command because thread-pool queueSize is at rejection threshold。如果配置的队列大小为 -1 则默认返回 true
- ThreadPoolScheduler:执行 createWorker()办法,默认应用 ThreadPoolWorker()类
- ThreadPoolWorker:执行 command 的外围逻辑
private Observable<R> getUserExecutionObservable(final AbstractCommand<R> _cmd) {
Observable<R> userObservable;
try {userObservable = getExecutionObservable();
} catch (Throwable ex) {// the run() method is a user provided implementation so can throw instead of using Observable.onError
// so we catch it here and turn it into Observable.error
userObservable = Observable.error(ex);
}
return userObservable
.lift(new ExecutionHookApplication(_cmd))
.lift(new DeprecatedOnRunHookApplication(_cmd));
}
@Override
final protected Observable<R> getExecutionObservable() {return Observable.defer(new Func0<Observable<R>>() {
@Override
public Observable<R> call() {
try {// 能够看到 run()办法了。HystrixCommand.run()其实就是咱们本人写的代码里的办法
return Observable.just(run());
} catch (Throwable ex) {return Observable.error(ex);
}
}
}).doOnSubscribe(new Action0() {
@Override
public void call() {
// Save thread on which we get subscribed so that we can interrupt it later if needed
executionThread.set(Thread.currentThread());
}
});
}
最初能够看到会调用 Observable.just(run()),这个就是咱们咱们本人写的代码里的办法,到这里就是咱们整体的执行过程了。