乐趣区

关于后端:用前缀树实现中文敏感词过滤器

前言

本文代码实现一个中文的敏感词过滤器,事后将筹备好的敏感词写入前缀树数据结构中实现疾速检索,并且节俭内存。个别用于查看注册用户名称、舆论是否蕴含不文化的词汇。

能够判断内容是否蕴含敏感词;找出内容中的敏感词;将内容中的敏感词替换成设置的字符。

运行环境

代码应用了 JDK8 语法,以及测试框架 Jupiter。以下是 Maven 配置:

<properties>
    <java.version>1.8</java.version>
    <maven.compiler.source>${java.version}</maven.compiler.source>
    <maven.compiler.target>${java.version}</maven.compiler.target>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>

<dependencies>
    <dependency>
        <groupId>org.junit.jupiter</groupId>
        <artifactId>junit-jupiter</artifactId>
        <version>RELEASE</version>
        <scope>test</scope>
    </dependency>
</dependencies>

过滤器源码

import java.util.*;
import java.util.function.Predicate;

/**
 * 敏感词过滤器,限中文
 */
public class SensitiveWordFilters {

    /**
     * 如词典中有敏感词:[敏感, 敏感词]
     * true
     * ├── 匹配到 [敏感] 完结匹配
     * └── 比拟省时,作简略判断用
     * false
     * ├── 匹配到 [敏感词] 才完结匹配
     * └── 绝对费时,然而在替换敏感词的时候,可能替换掉更多匹配数据
     */
    private static final boolean SIMPLE_MATCH = false;

    /**
     * 疏忽字符列表
     */
    private static final List<Character> IGNORE_CHAR_LIST = ignoreCharListInit();

    /**
     * 疏忽局部字符
     * 如词典中有敏感词:[敏感词],现验证文本[敏 感 词],也会认定为敏感词,因为疏忽了空格符
     * 同样在 重构字典、往字典中加敏感词时也会应用此断言
     */
    private static final Predicate<Character> CHAR_IGNORE =
            character -> Character.isSpaceChar(character) || IGNORE_CHAR_LIST.contains(character);

    /**
     * 重构字典
     */
    public static void refactoringBy(List<String> sensitiveWordList) {refactor(sensitiveWordList);
    }

    /**
     * 往字典中加敏感词
     */
    public static void add(List<String> sensitiveWordList) {sensitiveWordList.forEach(word -> recordToThe(SensitiveWordCache.dictionary, word));
    }

    /**
     * 往字典中加敏感词
     */
    public static void add(String sensitiveWord) {recordToThe(SensitiveWordCache.dictionary, sensitiveWord);
    }

    /**
     * true:text 中有敏感词
     */
    public static boolean foundIn(String text) {if (isEmpty(text)) {return false;}

        for (int i = 0; i < text.length(); i++) {if (checkSensitiveWord(text, i) > 0) {return true;}
        }

        return false;
    }

    /**
     * 从 text 中找出敏感词
     */
    public static Set<String> findOutFrom(String text) {if (isEmpty(text)) {return Collections.emptySet();
        }

        Set<String> resultSet = new TreeSet<>((o1, o2) -> o1.length() == o2.length() ? o1.compareTo(o2) : o2.length() - o1.length());
        for (int i = 0; i < text.length(); i++) {int endIndex = checkSensitiveWord(text, i);
            if (endIndex > 0) {resultSet.add(text.substring(i, ++endIndex));
            }
        }

        return resultSet;
    }

    /**
     * 替换 text 中的敏感词,每个字符换一个替换符
     *
     * @param text        文本
     * @param replaceChar 替换符
     * @return 替换后的文本
     */
    public static String replace(String text, String replaceChar) {Set<String> sensitiveWordSet = findOutFrom(text);
        if (sensitiveWordSet.isEmpty()) {return text;}

        for (String sensitiveWord : sensitiveWordSet) {text = text.replace(sensitiveWord, replacementOf(replaceChar, sensitiveWord.length()));
        }
        return text;
    }

    /**
     * 字典缓存
     */
    private static class SensitiveWordCache {

        /**
         * 字典 / 字典根节点
         */
        static Node dictionary;

        static {dictionary = new Node();
            dictionary.children = new HashMap<>(16);
        }

        private SensitiveWordCache() {}
    }

    /**
     * 重构字典
     *
     * @param sensitiveWordList 敏感字符列表
     */
    private static void refactor(List<String> sensitiveWordList) {Node newDictionary = new Node();
        newDictionary.children = new HashMap<>(16);
        synchronized (SensitiveWordCache.class) {for (String word : sensitiveWordList) {recordToThe(newDictionary, word);
            }
            SensitiveWordCache.dictionary = newDictionary;
        }
    }

    /**
     * 将敏感字符记录在节点上
     *
     * @param node 节点
     * @param word 敏感字符
     */
    private static void recordToThe(Node node, String word) {Objects.requireNonNull(node);
        synchronized (SensitiveWordCache.class) {for (int i = 0, lastIndex = word.length() - 1; i < word.length(); i++) {Character key = word.charAt(i);

                if (!CHAR_IGNORE.test(key)) {
                    // 搁置子节点
                    Node next = node.get(key);
                    if (Objects.isNull(next)) {next = new Node();
                        node.putChild(key, next);
                    }
                    node = next;
                }

                if (i == lastIndex) {node.isEnd = true;}
            }
        }
    }

    /**
     * 从 startIndex 开始匹配敏感字符
     *
     * @param text       文本
     * @param startIndex 文本起始地位
     * @return 0- 没有敏感字符,>0 敏感字符终止地位
     */
    private static int checkSensitiveWord(String text, int startIndex) {
        int endIndex = 0;
        Node node = SensitiveWordCache.dictionary;
        for (int i = startIndex; i < text.length(); i++) {Character key = text.charAt(i);

            if (CHAR_IGNORE.test(key)) {continue;}

            node = node.get(key);
            if (Objects.isNull(node)) {break;}

            if (node.isEnd) {
                endIndex = i;
                if (SIMPLE_MATCH) {break;}
            }
        }

        return endIndex;
    }

    private static boolean isEmpty(String str) {return str == null || "".equals(str);
    }

    /**
     * 生成残缺的替换符
     *
     * @param replaceChar 单字符替换符
     * @param num         替换数量
     * @return 残缺替换符
     */
    private static String replacementOf(String replaceChar, int num) {
        int minJointLength = 2;
        if (num < minJointLength) {return replaceChar;}

        StringBuilder replacement = new StringBuilder();
        for (int i = 0; i < num; i++) {replacement.append(replaceChar);
        }
        return replacement.toString();}

    /**
     * 字典数据节点
     */
    private static class Node {
        /**
         * true:敏感词结尾
         */
        boolean isEnd;

        /**
         * 子节点列表
         */
        Map<Character, Node> children;

        Node get(Character key) {return Objects.nonNull(children) ? children.get(key) : null;
        }

        void putChild(Character key, Node node) {if (Objects.isNull(children)) {children = new HashMap<>(16);
            }
            children.put(key, node);
        }
    }

    /**
     * 初始化疏忽字符列表
     */
    private static List<Character> ignoreCharListInit() {List<Character> ignoreCharList = new ArrayList<>(10);
        ignoreCharList.add('|');
        ignoreCharList.add('-');
        return Collections.unmodifiableList(ignoreCharList);
    }

    private SensitiveWordFilters() {}
}

过滤器测试类

import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test;

import java.util.Arrays;

class SensitiveWordFiltersTest {

    /**
     * 重构字典
     */
    @Test
    void refactoringBy() {SensitiveWordFilters.refactoringBy(Arrays.asList(getSensitiveWords()));
    }

    /**
     * 往字典中加敏感词
     */
    @Test
    void add() {SensitiveWordFilters.add(Arrays.asList("敏感词"));
    }

    /**
     * 判断内容是否蕴含敏感词
     */
    @Test
    void foundIn() {SensitiveWordFilters.refactoringBy(Arrays.asList(getSensitiveWords()));
        Assertions.assertTrue(SensitiveWordFilters.foundIn("白银混蛋"));
    }

    /**
     * 从内容中找出敏感词
     */
    @Test
    void findOutFrom() {SensitiveWordFilters.refactoringBy(Arrays.asList(getSensitiveWords()));
        System.out.println(SensitiveWordFilters.findOutFrom("白银混蛋"));
    }

    /**
     * 替换内容中的敏感词
     */
    @Test
    void replace() {SensitiveWordFilters.refactoringBy(Arrays.asList(getSensitiveWords()));
        String string = "就算是一个 顶 - 级 高 手,也会被那个白银 混蛋坑得很惨";
        System.out.println(SensitiveWordFilters.replace(string, "*"));
    }

    private static String[] getSensitiveWords() {return sensitiveWords.split("\\|");
    }

    static final String sensitiveWords = "顶级 | 白银 | 混蛋";
}
退出移动版