本文作者:
熊喵君,原文链接:https://pandaychen.github.io/…
转载
Go 语言中文网 公众号
Golang 爱好者社区,这里有精选的网站上数千篇优良文章供你学习,内容涵盖 Golang 根底系列教程、实战教程等优良开源我的项目实际,同时会分享职场教训。每周获取 Golang 一周资讯等值得关注的内容
0x00 前言
HTTP2 是一个全双工的流式协定, 服务端也能够被动 ping 客户端, 且服务端还会有一些检测连贯可用性和管制客户端 ping 包频率的配置。gRPC 就是采纳 HTTP2 来作为其根底通信模式的,所以默认的 gRPC 客户端都是长连贯。
有这么一种场景,须要客户端和服务端放弃长久的长连贯,即无论服务端、客户端异样断开或重启,长连贯都要具备重试保活(当然前提是两方重启都胜利)的需要。在 gRPC 中,对于曾经建设的长连贯,服务端异样重启之后,客户端个别会收到如下谬误:
rpc error: code = Unavailable desc = transport is closing
大部分的 gRPC 客户端封装都没有很好的解决这类 case,参见 Warden 对于 Server 端服务重启后 Client 连贯断开之后的重试问题[1],对于这种谬误,举荐有两种解决办法:
- 重试:在客户端调用失败时,抉择以指数退却(Exponential Backoff)来优雅进行重试
- 减少 keepalive 的保活策略
- 减少重连(auto reconnect)策略
这篇文章就来剖析下如何实现这样的客户端保活(keepalive)逻辑。提到保活机制,咱们先看下 gRPC 的 keepalive 机制[2]。
0x01 HTTP2 的 GOAWAY 帧
HTTP2 应用 GOAWAY 帧信号来管制连贯敞开,GOAWAY 用于启动连贯敞开或收回严重错误状态信号。GOAWAY 语义为容许端点失常进行承受新的流,同时依然实现对先前建设的流的解决,当 client 收到这个包之后就会被动敞开连贯。下次须要发送数据时,就会从新建设连贯。GOAWAY 是实现 grpc.gracefulStop 机制的重要保障。
gRPC 客户端 keepalive
gRPC 客户端提供 keepalive 配置如下:
var kacp = keepalive.ClientParameters{
Time: 10 * time.Second, // send pings every 10 seconds if there is no activity
Timeout: time.Second, // wait 1 second for ping ack before considering the connection dead
PermitWithoutStream: true, // send pings even without active streams
}
//Dial 中传入 keepalive 配置
conn, err := grpc.Dial(*addr, grpc.WithInsecure(), grpc.WithKeepaliveParams(kacp))
keepalive.ClientParameters 参数的含意如下:
- Time:如果没有 activity,则每隔 10s 发送一个 ping 包
- Timeout:如果 ping ack 1s 之内未返回则认为连贯已断开
-
PermitWithoutStream:如果没有 active 的 stream,是否容许发送 ping
联想到,在我的项目中ssh
客户端[3] 和 mysql 客户端中都有着相似的实现,即独自开启协程来实现 keepalive:如上面的代码(以 ssh 为例):go func() {t := time.NewTicker(2 * time.Second) defer t.Stop() for range t.C {_, _, err := client.Conn.SendRequest("keepalive@golang.org", true, nil) if err != nil {return} } }()
gPRC 的实现
在 grpc-go 的 newHTTP2Client[4] 办法中,有上面的逻辑:即在新建一个 HTTP2Client 的时候会启动一个 goroutine 来解决 keepalive
// newHTTP2Client constructs a connected ClientTransport to addr based on HTTP2 // and starts to receive messages on it. Non-nil error returns if construction // fails. func newHTTP2Client(connectCtx, ctx context.Context, addr resolver.Address, opts ConnectOptions, onPrefaceReceipt func(), onGoAway func(GoAwayReason), onClose func()) (_ *http2Client, err error) { ... if t.keepaliveEnabled {t.kpDormancyCond = sync.NewCond(&t.mu) go t.keepalive()} ... }
接下来,看下
keepalive
办法[5] 的实现:func (t *http2Client) keepalive() {p := &ping{data: [8]byte{}} //ping 的内容 timer := time.NewTimer(t.kp.Time) // 启动一个定时器, 触发工夫为配置的 Time 值 //for loop for { select { // 定时器触发 case <-timer.C: if atomic.CompareAndSwapUint32(&t.activity, 1, 0) {timer.Reset(t.kp.Time) continue } // Check if keepalive should go dormant. t.mu.Lock() if len(t.activeStreams) < 1 && !t.kp.PermitWithoutStream { // Make awakenKeepalive writable. <-t.awakenKeepalive t.mu.Unlock() select { case <-t.awakenKeepalive: // If the control gets here a ping has been sent // need to reset the timer with keepalive.Timeout. case <-t.ctx.Done(): return } } else {t.mu.Unlock() if channelz.IsOn() {atomic.AddInt64(&t.czData.kpCount, 1) } // Send ping. t.controlBuf.put(p) } // By the time control gets here a ping has been sent one way or the other. timer.Reset(t.kp.Timeout) select { case <-timer.C: if atomic.CompareAndSwapUint32(&t.activity, 1, 0) {timer.Reset(t.kp.Time) continue } t.Close() return case <-t.ctx.Done(): if !timer.Stop() {<-timer.C} return } // 下层告诉 context 完结 case <-t.ctx.Done(): if !timer.Stop() { // 返回 false,示意 timer 未被销毁 <-timer.C } return } } }
从客户端的 keepalive 实现中梳理下执行逻辑:
- 填充 ping 包内容, 为 [8]byte{},创立定时器, 触发工夫为用户配置中的 Time
- 循环解决,select 的两大分支,一为定时器触发后执行的逻辑,另一分支为 t.ctx.Done(),即 keepalive 的下层利用调用了 cancel 完结 context 子树
- 外围逻辑在定时器触发的过程中
gRPC 服务端的 keepalive
gRPC 的服务端次要有两块逻辑:
接管并相应客户端的 ping 包
独自启动 goroutine 探测客户端是否存活
gRPC 服务端提供 keepalive 配置,分为两局部 keepalive.EnforcementPolicy 和 keepalive.ServerParameters,如下:
var kaep = keepalive.EnforcementPolicy{
MinTime: 5 * time.Second, // If a client pings more than once every 5 seconds, terminate the connection
PermitWithoutStream: true, // Allow pings even when there are no active streams
}
var kasp = keepalive.ServerParameters{
MaxConnectionIdle: 15 * time.Second, // If a client is idle for 15 seconds, send a GOAWAY
MaxConnectionAge: 30 * time.Second, // If any connection is alive for more than 30 seconds, send a GOAWAY
MaxConnectionAgeGrace: 5 * time.Second, // Allow 5 seconds for pending RPCs to complete before forcibly closing connections
Time: 5 * time.Second, // Ping the client if it is idle for 5 seconds to ensure the connection is still active
Timeout: 1 * time.Second, // Wait 1 second for the ping ack before assuming the connection is dead
}
func main(){
...
s := grpc.NewServer(grpc.KeepaliveEnforcementPolicy(kaep), grpc.KeepaliveParams(kasp))
...
}
keepalive.EnforcementPolicy:
- MinTime:如果客户端两次 ping 的距离小于 5s,则敞开连贯
- PermitWithoutStream:即便没有 active stream, 也容许 ping
keepalive.ServerParameters: - MaxConnectionIdle:如果一个 client 闲暇超过 15s, 发送一个 GOAWAY, 为了避免同一时间发送大量 GOAWAY, 会在 15s 工夫距离高低浮动 15*10%, 即 15+1.5 或者 15-1.5
- MaxConnectionAge:如果任意连贯存活工夫超过 30s, 发送一个 GOAWAY
- MaxConnectionAgeGrace:在强制敞开连贯之间, 容许有 5s 的工夫实现 pending 的 rpc 申请
- Time:如果一个 client 闲暇超过 5s, 则发送一个 ping 申请
-
Timeout:如果 ping 申请 1s 内未收到回复, 则认为该连贯已断开
gRPC 的实现
服务端解决客户端的 ping 包的 response 的逻辑在
handlePing
办法[6] 中。handlePing 办法会判断是否违反两条 policy, 如果违反则将 pingStrikes++, 当违反次数大于 maxPingStrikes(2) 时, 打印一条谬误日志并且发送一个 goAway 包,断开这个连贯,具体实现如下:func (t *http2Server) handlePing(f *http2.PingFrame) {if f.IsAck() { if f.Data == goAwayPing.data && t.drainChan != nil {close(t.drainChan) return } // Maybe it's a BDP ping. if t.bdpEst != nil {t.bdpEst.calculate(f.Data) } return } pingAck := &ping{ack: true} copy(pingAck.data[:], f.Data[:]) t.controlBuf.put(pingAck) now := time.Now() defer func() {t.lastPingAt = now}() // A reset ping strikes means that we don't need to check for policy // violation for this ping and the pingStrikes counter should be set // to 0. if atomic.CompareAndSwapUint32(&t.resetPingStrikes, 1, 0) { t.pingStrikes = 0 return } t.mu.Lock() ns := len(t.activeStreams) t.mu.Unlock() if ns < 1 && !t.kep.PermitWithoutStream { // Keepalive shouldn't be active thus, this new ping should // have come after at least defaultPingTimeout. if t.lastPingAt.Add(defaultPingTimeout).After(now) {t.pingStrikes++} } else { // Check if keepalive policy is respected. if t.lastPingAt.Add(t.kep.MinTime).After(now) {t.pingStrikes++} } if t.pingStrikes > maxPingStrikes { // Send goaway and close the connection. if logger.V(logLevel) {logger.Errorf("transport: Got too many pings from the client, closing the connection.") } t.controlBuf.put(&goAway{code: http2.ErrCodeEnhanceYourCalm, debugData: []byte("too_many_pings"), closeConn: true}) } }
留神,对 pingStrikes 累加的逻辑:
- t.lastPingAt.Add(defaultPingTimeout).After(now):
-
t.lastPingAt.Add(t.kep.MinTime).After(now):
func (t *http2Server) handlePing(f *http2.PingFrame) { ... if ns < 1 && !t.kep.PermitWithoutStream { // Keepalive shouldn't be active thus, this new ping should // have come after at least defaultPingTimeout. if t.lastPingAt.Add(defaultPingTimeout).After(now) {t.pingStrikes++} } else { // Check if keepalive policy is respected. if t.lastPingAt.Add(t.kep.MinTime).After(now) {t.pingStrikes++} } if t.pingStrikes > maxPingStrikes { // Send goaway and close the connection. errorf("transport: Got too many pings from the client, closing the connection.") t.controlBuf.put(&goAway{code: http2.ErrCodeEnhanceYourCalm, debugData: []byte("too_many_pings"), closeConn: true}) } }
keepalive 相干代码
gRPC 服务端新建一个 HTTP2 server 的时候会启动一个独自的 goroutine 解决 keepalive 逻辑,
newHTTP2Server
办法[7]:func newHTTP2Server(conn net.Conn, config *ServerConfig) (_ ServerTransport, err error) { ... go t.keepalive() ... }
简略剖析下 keepalive 的实现,外围逻辑是启动 3 个定时器,别离为 maxIdle、maxAge 和 keepAlive,而后在 for select 中解决相干定时器触发事件:
- maxIdle 逻辑:判断 client 闲暇工夫是否超出配置的工夫, 如果超时, 则调用 t.drain, 该办法会发送一个 GOAWAY 包
maxAge 逻辑:触发之后首先调用 t.drain 发送 GOAWAY 包, 接着重置定时器, 工夫设置为 MaxConnectionAgeGrace, 再次触发后调用 t.Close() 间接敞开(有些 graceful 的象征) -
keepalive 逻辑:首先判断 activity 是否为 1, 如果不是则置 pingSent 为 true, 并且发送 ping 包, 接着重置定时器工夫为 Timeout, 再次触发后如果 activity 不为 1(即未收到 ping 的回复)并且 pingSent 为 true, 则调用 t.Close() 敞开连贯
func (t *http2Server) keepalive() {p := &ping{} var pingSent bool maxIdle := time.NewTimer(t.kp.MaxConnectionIdle) maxAge := time.NewTimer(t.kp.MaxConnectionAge) keepalive := time.NewTimer(t.kp.Time) // NOTE: All exit paths of this function should reset their // respective timers. A failure to do so will cause the // following clean-up to deadlock and eventually leak. defer func() { // 退出前,实现定时器的回收工作 if !maxIdle.Stop() {<-maxIdle.C} if !maxAge.Stop() {<-maxAge.C} if !keepalive.Stop() {<-keepalive.C} }() for { select { case <-maxIdle.C: t.mu.Lock() idle := t.idle if idle.IsZero() { // The connection is non-idle. t.mu.Unlock() maxIdle.Reset(t.kp.MaxConnectionIdle) continue } val := t.kp.MaxConnectionIdle - time.Since(idle) t.mu.Unlock() if val <= 0 { // The connection has been idle for a duration of keepalive.MaxConnectionIdle or more. // Gracefully close the connection. t.drain(http2.ErrCodeNo, []byte{}) // Resetting the timer so that the clean-up doesn't deadlock. maxIdle.Reset(infinity) return } maxIdle.Reset(val) case <-maxAge.C: t.drain(http2.ErrCodeNo, []byte{}) maxAge.Reset(t.kp.MaxConnectionAgeGrace) select { case <-maxAge.C: // Close the connection after grace period. t.Close() // Resetting the timer so that the clean-up doesn't deadlock. maxAge.Reset(infinity) case <-t.ctx.Done():} return case <-keepalive.C: if atomic.CompareAndSwapUint32(&t.activity, 1, 0) { pingSent = false keepalive.Reset(t.kp.Time) continue } if pingSent {t.Close() // Resetting the timer so that the clean-up doesn't deadlock. keepalive.Reset(infinity) return } pingSent = true if channelz.IsOn() {atomic.AddInt64(&t.czData.kpCount, 1) } t.controlBuf.put(p) keepalive.Reset(t.kp.Timeout) case <-t.ctx.Done(): return } } }
实现强壮的长连贯客户端
参考资料
[1]
Warden 对于 Server 端服务重启后 Client 连贯断开之后的重试问题: https://github.com/go-kratos/…
[2]
keepalive 机制: https://github.com/grpc/grpc/…
[3]
ssh 客户端: https://pandaychen.github.io/… 客户端 -keepalive- 机制
[4]
newHTTP2Client: https://github.com/grpc/grpc-…
[5]
keepalive 办法: https://github.com/grpc/grpc-…
[6]
handlePing 办法: https://github.com/grpc/grpc-…
[7]
newHTTP2Server 办法: https://github.com/grpc/grpc-…
[8]
服务端: https://github.com/grpc/grpc-…
[9]
客户端: https://github.com/grpc/grpc-…
[10]
GRPC 开箱手册: https://juejin.im/post/684490…
本文由 mdnice 多平台公布