关于后端:Pytorch训练可视化包visdom的使用

43次阅读

共计 8844 个字符,预计需要花费 23 分钟才能阅读完成。

@TOC

一、简介

Visdom 是一个基于 Python 的可视化工具包,能够用于 PyTorch 等深度学习框架中的实时数据可视化。它提供了一个 Web 界面,能够不便地创立图表、散点图和直方图等可视化元素。相比 tensorboardrensorboardX 具备更轻量、更便捷、更丰盛、更疾速等特点。

visdom 的 github 主页:https://github.com/fossasia/visdom

visdom 的中文参考文档:https://ptorch.com/news/77.html

visdom 的优良教程:https://blog.csdn.net/weixin_41010198/article/details/117853358

二、装置与启动

应用 Visdom 须要先装置 visdom 包,能够通过 pip 命令进行装置:

pip install visdom

接下来,在 cmd 或者 Anaconda 中应用 python -m visdom.server 启动服务。并在浏览器中输出提醒的端口,并且须要放弃 黑框框cmdAnaconda)始终开启。

当你关上后,会出现一个空白的界面,是因为目前还没有写入任何图形。

三、设计思路

假如你的电脑 C 盘中有很多文件夹,每个文件夹有很多文件,每个文件能够填入你想要的信息。

同样,visdom启动服务后,呈现出一个网页页面,会随时依据你电脑跑的程序中无关 visdom 的局部,呈现出可视化图。这个网页中,能够抉择不同的文件夹进行存储,让你的图文件分门别类,比方 程序 A 相干的图存在 A 文件夹 中,程序 B 相干的图存在 B 文件夹 下,当然也能够各个程序生成的图都存在 C 文件夹 下。每个文件夹中能够画不同的图,每个图也能够画多个点、线、柱等等。

在每个文件夹下,能够存入 视频 图像 文本 等等

图像分为图片、以及生成的一些数据图,这里简略介绍一下生成的数据图,比方折线图

vis.scatter:2D 或 3D 散点图
vis.line:线图
vis.stem:stem 图
vis.heatmap:热图地块
vis.bar:条形图
vis.histogram:直方图
vis.boxplot:盒子
vis.surf:外表反复
vis.contour:等高线图
vis.quiver:颤动的情节
vis.mesh:网格图
vis.dual_axis_lines:双 y 轴线图

四、在迭代训练中的绘图

首先创立一个可视化界面和文件夹:

import visdom

viz = visdom.Visdom(env='main-8')

其中 env='main-8' 示意一个文件夹名称,main-8 能够替换为其余名称,假使不写该参数,则默认存储在 env='main' 中,接下来,咱们应用 viz 进行操作,就意味着操作对应的图存在 'main-8' 中。
此时,关上网页,会看到有两个环境Environment,一个是“main”, 一个是“main-8”

创立好文件夹后,接下来,咱们在这个文件夹上面写一些图。
先关上网页,确保是 “online” 在线模式

为了模仿迭代过程,这里设计一个循环语句。执行代码

import visdom

viz = visdom.Visdom(env='main-8')

viz.line(X=[0.],  # x 坐标
         Y=[0.],  # y 值
        win="line1",  # 窗口 id
        name="Adam 梯度",  # 线条名称
        update='append',  # 以增加形式退出
        opts={
            'showlegend': True,  # 显示网格
            'title': "Demo line in Visdom",
            'xlabel': "x1",  # x 轴标签
            'ylabel': "y1",  # y 轴标签
        },)

for i in range(10):
    viz.line(X=[i], Y=[i*2],name="Adam 梯度", win='line1', update='append')

    viz.line(X=[i], Y=[i**2],name="SGD 梯度", win='line1', update='append')

    viz.line(X=[i], Y=[5*i+2],name="GDM 梯度", win='line1', update='append')

先看一下,生成的后果。关上网页

假如当初我想要在 main- 8 文件夹上面,画另外一个图,执行程序

import visdom

vizs = visdom.Visdom(env='main-8')

vizs.line(X=[0.],  # x 坐标
         Y=[0.],  # y 值
        win="line2",  # 窗口 id
        name="Adam 梯度",  # 线条名称
        update='append',  # 以增加形式退出
        opts={
            'showlegend': True,  # 显示网格
            'title': "Demo line in Visdom-1",
            'xlabel': "x1",  # x 轴标签
            'ylabel': "y1",  # y 轴标签
        },)

for i in range(10):
    vizs.line(X=[i], Y=[5*i**3],name="Adam 梯度", win='line2', update='append')

    vizs.line(X=[i], Y=[i**2],name="SGD 梯度", win='line2', update='append')

查看后果

下面的内容,还不具备一般性,上面给出局部代码示例和效果图,以满足理论中的简单需要

背景:假如,当初有一批数据,数据来自总体一元线性方程,咱们依据 A、B、C 三种梯度降落算法,在不同的采样率 rate 下,比照剖析,三种梯度降落算法中的 损失值 w 值 b 值

形容:
图 1:loss 损失图,横轴为采样比 rate、纵轴为 loss 损失值,图中有 3 个折线,对应 A(无梯度)、B(小梯度)、C(随机梯度)三种梯度降落办法
同理,图 2 为 w 值图,图 3 为 b 值图, 其余相似。

生成文件夹上面的三个图窗口,生成图窗口只须要执行一次就行,放在 env='main-9' 文件夹中

name_1 = '无梯度'
name_2 = '小梯度'
name_3 = '随机梯度'



import visdom

viz = visdom.Visdom(env='main-9')


window_loss = viz.line(X=[0.1],  # x 坐标
        Y=[0.],  # y 值
        win="line_loss_1",  # 窗口 id
        name= name_1,  # 线条名称
        update='append',  # 以增加形式退出
        opts={
            'showlegend': True,  # 显示网格
            'title': "loss",
            'xlabel': "rate",  # x 轴标签
            'ylabel': "loss",  # y 轴标签
        },)

window_w = viz.line(X=[0.1],  # x 坐标
         Y=[0.],  # y 值
        win="line_w_1",  # 窗口 id
        name=name_1,  # 线条名称
        update='append',  # 以增加形式退出
        opts={
            'showlegend': True,  # 显示网格
            'title': "W value",
            'xlabel': "rate",  # x 轴标签
            'ylabel': "w",  # y 轴标签
        },)


window_b = viz.line(X=[0.1],  # x 坐标
         Y=[0.],  # y 值
        win="line_b_1",  # 窗口 id
        name=name_1,  # 线条名称
        update='append',  # 以增加形式退出
        opts={
            'showlegend': True,  # 显示网格
            'title': "b value",
            'xlabel': "rate",  # x 轴标签
            'ylabel': "b",  # y 轴标签
        },)

在迭代训练中,每次 result 生成的后果为([loss_A, loss_B, loss_C],[A_w,B_w, C_w],[A_b, B_b, C_b])


for i in range(9):
        va = 'append'
        if i == 0:
            va = "replace"

        rate += 0.1
        result = main()
        
        #result:([loss_A, loss_B, loss_C],[A_w,B_w, C_w],[A_b, B_b, C_b])

        viz.line(X=[rate], Y=[result[0][0]],name=name_1, win=window_loss, update=va)
        viz.line(X=[rate], Y=[result[0][1]],name=name_2, win=window_loss, update=va)
        viz.line(X=[rate], Y=[result[0][2]],name=name_3, win=window_loss, update=va)
        viz.line(X=[rate], Y=[result[1][0]],name=name_1, win=window_w, update=va)
        viz.line(X=[rate], Y=[result[1][1]],name=name_2, win=window_w, update=va)
        viz.line(X=[rate], Y=[result[1][2]],name=name_3, win=window_w, update=va)
        viz.line(X=[rate], Y=[result[2][0]],name=name_1, win=window_b, update=va)
        viz.line(X=[rate], Y=[result[2][1]],name=name_2, win=window_b, update=va)
        viz.line(X=[rate], Y=[result[2][2]],name=name_3, win=window_b, update=va)

关上网页

假使是在机器学习、深度学习中:

# 训练模型
vis = visdom.Visdom(env='main')  # 设置环境窗口的名称, 如果不设置名称就默认为 main
opt = {
        'xlabel': 'epochs',
        'ylabel': 'loss_value',
        'title': 'SGD_loss'
    }
loss_window = vis.line(X=[0],
    Y=[0],
    opts=opt
)

for epoch in range(400):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())

    #所有梯度归零化
    optimizer.zero_grad()
    #反向流传求出梯度
    loss.backward()
    #更新权重和偏置值,即 w 和 b
    optimizer.step()

    vis.line(X=[epoch], Y=[loss.item()], win=loss_window, opts=opt, update='append')

五、个别绘图

放在 “main” 上面, 可疏忽参数。在 jupyter notebook 中执行代码:

import visdom
import numpy as np

vis = visdom.Visdom()

vis.text('Hello, world!')
vis.image(np.ones((3, 10, 10)))
import visdom
vis = visdom.Visdom()

trace = dict(x=[1, 2, 3], y=[4, 5, 6], mode="markers+lines", type='custom',
             marker={'color': 'red', 'symbol': 104, 'size': "10"},
             text=["one", "two", "three"], name='1st Trace')
layout = dict(title="First Plot", xaxis={'title': 'x1'}, yaxis={'title': 'x2'})

vis._send({'data': [trace], 'layout': layout, 'win': 'mywin'})
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

from visdom import Visdom
import numpy as np
import math
import os.path
import getpass
from sys import platform as _platform
from six.moves import urllib

viz = Visdom()
assert viz.check_connection()

try:
    import matplotlib.pyplot as plt
    plt.plot([1, 23, 2, 4])
    plt.ylabel('some numbers')
    viz.matplot(plt)
except BaseException as err:
    print('Skipped matplotlib example')
    print('Error message:', err)
# 单张
viz.image(np.random.rand(3, 512, 256),
    opts=dict(title='Random!', caption='How random.'),
)
#多张
viz.images(np.random.randn(20, 3, 64, 64),
    opts=dict(title='Random images', caption='How random.')
)
# 画出随机的散点图
import time
Y = np.random.rand(100)
old_scatter = viz.scatter(X=np.random.rand(100, 2),
    Y=(Y[Y > 0] + 1.5).astype(int),
    opts=dict(legend=['Didnt', 'Update'],
        xtickmin=-50,
        xtickmax=50,
        xtickstep=0.5,
        ytickmin=-50,
        ytickmax=50,
        ytickstep=0.5,
        markersymbol='cross-thin-open',
    ),
)

time.sleep(5)

#对窗口进行更新, 包含标注, 坐标, 款式等
viz.update_window_opts(
    win=old_scatter,
    opts=dict(legend=['Apples', 'Pears'],
        xtickmin=0,
        xtickmax=1,
        xtickstep=0.5,
        ytickmin=0,
        ytickmax=1,
        ytickstep=0.5,
        markersymbol='cross-thin-open',
    ),
)
## 通过 update='new' 增加新散点

import time
win = viz.scatter(X=np.random.rand(255, 2),
    opts=dict(
        markersize=10,
        markercolor=np.random.randint(0, 255, (255, 3,)),
    ),
)

# 判断窗口是否存在
assert viz.win_exists(win), 'Created window marked as not existing'
time.sleep(2)

# 向散点图中退出新的形容
viz.scatter(X=np.random.rand(255),
    Y=np.random.rand(255),
    win=win,
    name='new_trace',
    update='new'
)
# 2D 散点图, 调配不同色彩
viz.scatter(X=np.random.rand(255, 2),
    #随机指定 1 或者 2
    Y=(np.random.rand(255) + 1.5).astype(int),
    opts=dict(
        markersize=10,
        ## 调配两种色彩
        markercolor=np.random.randint(0, 255, (2, 3,)),
    ),
)
#3D 散点图
viz.scatter(X=np.random.rand(100, 3),
    Y=(Y + 1.5).astype(int),
    opts=dict(legend=['Men', 'Women'],
        markersize=5,
    )
)
viz.line(Y=np.random.rand(10), opts=dict(showlegend=True))

Y = np.linspace(-5, 5, 100)
viz.line(Y=np.column_stack((Y * Y, np.sqrt(Y + 5))),
    X=np.column_stack((Y, Y)),
    opts=dict(markers=False),
)
viz.bar(X=np.random.rand(20))
viz.bar(X=np.abs(np.random.rand(5, 3)),
    opts=dict(
        stacked=True,
        legend=['Facebook', 'Google', 'Twitter'],
        rownames=['2012', '2013', '2014', '2015', '2016']
    )
)
viz.bar(X=np.random.rand(20, 3),
    opts=dict(
        stacked=False,
        legend=['The Netherlands', 'France', 'United States']
    )
)
viz.heatmap(X=np.outer(np.arange(1, 6), np.arange(1, 11)),
    opts=dict(columnnames=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'],
        rownames=['y1', 'y2', 'y3', 'y4', 'y5'],
        colormap='Electric',
    )
)
# contour
x = np.tile(np.arange(1, 101), (100, 1))
y = x.transpose()
X = np.exp((((x - 50) ** 2) + ((y - 50) ** 2)) / -(20.0 ** 2))
viz.contour(X=X, opts=dict(colormap='Viridis'))

# surface
viz.surf(X=X, opts=dict(colormap='Hot'))
# boxplot
X = np.random.rand(100, 2)
X[:, 1] += 2
viz.boxplot(
    X=X,
    opts=dict(legend=['Men', 'Women'])
)

# stemplot
Y = np.linspace(0, 2 * math.pi, 70)
X = np.column_stack((np.sin(Y), np.cos(Y)))
viz.stem(
    X=X,
    Y=Y,
    opts=dict(legend=['Sine', 'Cosine'])
)

# quiver plot
X = np.arange(0, 2.1, .2)
Y = np.arange(0, 2.1, .2)
X = np.broadcast_to(np.expand_dims(X, axis=1), (len(X), len(X)))
Y = np.broadcast_to(np.expand_dims(Y, axis=0), (len(Y), len(Y)))
U = np.multiply(np.cos(X), Y)
V = np.multiply(np.sin(X), Y)
viz.quiver(
    X=U,
    Y=V,
    opts=dict(normalize=0.9),
)
# text window with Callbacks
txt = 'This is a write demo notepad. Type below. Delete clears text:<br>'
callback_text_window = viz.text(txt)

# pie chart
X = np.asarray([19, 26, 55])
viz.pie(
X=X,
opts=dict(legend=['Residential', 'Non-Residential', 'Utility'])
)

# mesh plot
x = [0, 0, 1, 1, 0, 0, 1, 1]
y = [0, 1, 1, 0, 0, 1, 1, 0]
z = [0, 0, 0, 0, 1, 1, 1, 1]
X = np.c_[x, y, z]
i = [7, 0, 0, 0, 4, 4, 6, 6, 4, 0, 3, 2]
j = [3, 4, 1, 2, 5, 6, 5, 2, 0, 1, 6, 3]
k = [0, 7, 2, 3, 6, 7, 1, 1, 5, 5, 7, 6]
Y = np.c_[i, j, k]
viz.mesh(X=X, Y=Y, opts=dict(opacity=0.5))

生成的图片

六、根本调整与保留文件

在下面应用代码生成的这些图片,我应该怎么保留呢?我下次再关上网页,能不能还是显示这样的动静网页呢?我能不能调整某一个图片大小,显示它的数据之类的呢?答案是必定的!

1、调整大小、拖拽:长按拖动即可,右下角落长按挪动即可放大放大

2、查看图片对应的数据:点击右下角Edit,会跳转到新网页,能够灵便进行数据调整

3、图内控件调整:比方,放大某一区域,或者图内整体放大放大等等

4、保留单个图

5、保留整个环境:逐渐将每个文件夹都保留一下

点击 文件夹图标,而后更改名称,再点击fork, 再点击“save”,即可保留,咱们将上图中的 4 个文件夹都进行保留。

还有许多其余性能,自行理解
此时,能够敞开网页,敞开 黑框框,不必放心数据失落。

6、从新加载关上环境

很久当前,当咱们须要查看这些图形的时候,不须要从新跑代码,间接启动服务,关上网页即可。

同样的操作:在 黑框框 中启动服务关上网页。应用 python -m visdom.server 启动服务。并在浏览器中输出提醒的端口,那么咱们就能够看到之前生成的图形了。

7、不小心敞开了网页

只有黑框框没有敞开,不小心将网页敞开了,没有关系,数据不会失落,从新复制端口在浏览器中拜访即可。

本文由 mdnice 多平台公布

正文完
 0