kafka 学习
windows 上的 kafka 学习和装置相干的问题
一. 下载 kafka
kafka 应用 java 实现并且官网提供了 windows 的反对, 所以间接下载就完事了, 将其解压到一个文件夹下, 如我在 D:\kafka, 这里版本是 3.20, 其余版本可能会有点不同. 整体门路如下, 别离是
- bin: 提供的一些曾经写好了的 shell 命令文件和 windows 上面的 bat 文件
- config: 一些曾经配置好的文件, 如 kafka server 的配置,zookeeper 的配置,consumer 和 producer 的配置
- libs: jar 包和一些依赖
- licenses: 开源协定证书
二. 启动 kafka 单实例
激动人心的时刻来了, 咱们下载了文件, 装置了 jdk 环境 (个别都会有环境吧), 而后设置 properties 文件, 在这里我轻易贴一下要留神的 properties 文件, 定义了前面须要用的端口:
# file:config/server.properties
listeners=PLAINTEXT://127.0.0.1:9092 # 指定端口
log.dirs=E:\\kafka-logs-1 # 我感觉指定个文件夹比拟好
zookeeper.connect=localhost:2181 # 指定 zookeeper 服务器
# file:config/zookeeper.properties
dataDir=E:\\zookeeper
# the port at which the clients will connect
clientPort=2181
1. 启动 zookeeper
.\bin\windows\zookeeper-server-start.bat .\config\zookeeper.properties
# 如果应用 wsl 或者 bash 上面
.\bin\zookeeper-server-start.sh .\config\zookeeper.properties
2. 启动 kafka
.\bin\windows\kafka-server-start.bat .\config\server.properties
# 如果应用 wsl 或者 bash 上面
.\bin\kafka-server-start.sh .\config\zookeeper.properties
这样子就算是启动胜利了, 并且能够看到启动的实例连贯的 zookeeper 和 broker 提供的 ip.
3. 创立 topic
# 老版本应用 zookeeper-server 确定对应的 kafka 集群, 然而新版本应用 bootstrap-server 确定连贯的集群
.\bin\windows\kafka-topics --create --bootstrap-server 127.0.0.1:9092 --topic test
咱们查看当初的集群里的 topic 状况能够应用上面的命令:
.\bin\windows\kafka-topics --describe --bootstrap-server 127.0.0.1:9092
能够看到自身实际上存在一个 top 叫做__consumer_=offsets 去保留对应的 consumer 的 offeset 数据
4. 向 topic 写入数据和读取数据
.\bin\windows\kafka-console-producer --bootstrap-server 127.0.0.1:9092 --topic test1
输出日志数据, 之后再读出来
.\bin\windows\kafka-console-consumer.bat --topic test1 --bootstrap-server 127.0.0.1:9093 # --from-beginning 能够看到当初还保留的音讯
那么至此咱们就实现了最根本的 kafka 的操作, 创立主题 \ 写入数据 \ 读出数据
三. 编写本人的代码
1. 编写本人的 producer
依据 kafka 自身的教程,kafka-clients 自身提供了三个 send 模式, 别离是阻塞和非阻塞以及实现好了的 future 回调.
package com.lixiande.kafkaLearn;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Date;
import java.util.Properties;
import java.util.concurrent.Future;
public class Producer {Logger logger = LoggerFactory.getLogger(Producer.class);
private Properties kafkaProducerProps;
private KafkaProducer kafkaProducer;
public static void main(String[] args) {Producer producer = new Producer();
try {while (true) {producer.SendCallBack("test", "what fuck about key value", "this is nothing about kafka and send with Callback" + new Date().toString());
producer.SendBlock("test", "what fuck about key value", "this is nothing about kafka and send by blocking" + new Date().toString());
producer.SendAsync("test", "what fuck about key value", "this is nothing about kafka and send by async" + new Date().toString());
}
} finally {producer.kafkaProducer.close();
}
}
public void SendBlock(String topic, String key, String value) {
try {System.out.println("block send :" + kafkaProducer.send(new ProducerRecord<String, String>(topic, key, value)).get().toString());
} catch (Exception e) {e.printStackTrace();
}
}
public Future SendAsync(String topic, String key, String value) {return kafkaProducer.send(new ProducerRecord<String, String>(topic, key, value));
}
public void SendCallBack(String topic, String key, String value) {kafkaProducer.send(new ProducerRecord<String, String>(topic, key, value), new Callback() {
@Override
public void onCompletion(RecordMetadata recordMetadata, Exception e) {System.out.println(recordMetadata.toString());
if (e != null)
System.out.println(e.toString());
}
});
}
public Producer() {kafkaProducerProps = new Properties();
kafkaProducerProps.put("key.serializer", org.apache.kafka.common.serialization.StringSerializer.class.getName());
kafkaProducerProps.put("value.serializer", org.apache.kafka.common.serialization.StringSerializer.class.getName());
kafkaProducerProps.put("bootstrap.servers", "127.0.0.1:9092");
kafkaProducer = new KafkaProducer<String, String>(kafkaProducerProps);
}
}
2. 编写本人的 consumer
同样的 consumer 也是能够有很多种形式, 比方订阅 topic, 订阅 topic 外面的某些 partition, 以及订阅正则匹配的 topics
package com.lixiande.kafkaLearn;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.errors.WakeupException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.*;
public class Consumer {private static Logger logger = LoggerFactory.getLogger(Consumer.class);
private KafkaConsumer kafkaConsumer;
private Properties kafkaConsumerProps;
private Map<String, Integer> consumeMap;
public static void main(String[] args) {Consumer consumer = new Consumer();
Thread mainThread = Thread.currentThread();
Runtime.getRuntime().addShutdownHook(new Thread(() -> {System.out.println("consumer starting exiting");
consumer.kafkaConsumer.wakeup();
try {mainThread.join();
} catch (InterruptedException e) {e.printStackTrace();
}
}));
consumer.listen();}
public Consumer() {kafkaConsumerProps = new Properties();
kafkaConsumerProps.put("bootstrap.servers", "127.0.0.1:9092");
kafkaConsumerProps.put("key.deserializer", org.apache.kafka.common.serialization.StringDeserializer.class.getName());
kafkaConsumerProps.put("value.deserializer", org.apache.kafka.common.serialization.StringDeserializer.class.getName());
kafkaConsumerProps.put("group.id", "loopConsumer");
kafkaConsumer = new KafkaConsumer<String, String>(kafkaConsumerProps);
kafkaConsumer.subscribe(Collections.singletonList("test"));
// kafkaConsumer.subscribe(Pattern.compile("test*")); // 也能够订阅所有的 test* 的主题
List<PartitionInfo> partitionInfoList = kafkaConsumer.partitionsFor("test");
// XXX: 这里能够用于获取特定的 topic 的分区, 从而实现不同的消费者手动调配, 而不会走平衡
/*
// if (partitionInfoList != null){// for (PartitionInfo info : partitionInfoList){// partitions.add(new TopicPartition(info.topic(), info.partition()));
// }
// kafkaConsumer.assign(partitions);
// }
*/
consumeMap = new HashMap<>();}
public void listen() {
try {while (true) {ConsumerRecords<String, String> records = kafkaConsumer.poll(100);
for (ConsumerRecord<String, String> record : records) {logger.warn(record.toString());
int updatedCount = 1;
if (consumeMap.containsValue(record.value())) {updatedCount = consumeMap.get(record.value()) + 1;
}
consumeMap.put(record.value(), updatedCount);
}
System.out.println("\n-------------------------------------------------\n");
System.out.println(consumeMap);
System.out.println("\n-------------------------------------------------\n");
consumeMap.clear();
kafkaConsumer.commitAsync();}
} catch (WakeupException e) { } finally {kafkaConsumer.close();
System.out.println("Closed Consumer and we are done");
}
}
}