关于后端:第30章-LeetCode-72-编辑距离

37次阅读

共计 3303 个字符,预计需要花费 9 分钟才能阅读完成。

每日一句

A flower cannot blossom without sunshine, and man cannot live without love.
花没有阳光就不能盛开,人没有爱就不能生存。

题目起源

https://leetcode-cn.com/problems/edit-distance/

题目形容

 给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所应用的起码操作数。你能够对一个单词进行如下三种操作:插入一个字符
删除一个字符
替换一个字符 

示例

 示例一:输出:word1 = "horse", word2 = "ros"
输入:3
解释:horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')

示例二:输出:word1 = "intention", word2 = "execution"
输入:5
解释:intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')

题解

题解 1: 动静布局算法

具体算法思维请看:动静布局算法

/**
*  步骤一:定义数组元素的含意
*    定义 dp[m][n] 将 word1 转换成 word2 所应用的起码操作数, m, n 别离示意两个单词的长度
*  步骤二:找出初始值并设置边界条件
*    dp[0][0] = 0, 别离处于首行和首列的地位均能够间接求出值
*    dp[i][0] = i; m>i>=1  dp[0][i] = i; n>i>=1, m,n 示意两个单词的长度
*  步骤三:找出数组元素之间的关系式
*    后果:*      1. A== B 时:dp[i][j] = dp[i-1][j-1]; i>=1,j>=1
*      2. A!= B 时:*        在单词 A 中插入一个字符:dp[i][j] = dp[i][j-1] + 1;
*        在单词 A 中删除一个字符: dp[i][j] = dp[i-1][j] + 1;
*        批改单词 A 的一个字符:dp[i][j] = dp[i-1][j-1] + 1;
*        so, 最小操作数为三个操作的最小值:dp[i][j] = min(dp[i][j-1], dp[i-1][j], dp[i-1][j-1]) i>=1,j>=1
**/
class Solution {public int min(int a, int b, int c) {return Math.min(a, Math.min(b, c));
    }

    public int minDistance(String word1, String word2) {int m = word1.length();
        int n = word2.length();
        int[][] dp = new int[510][510];
        // 初始值以及边界条件
        if(m * n == 0) {return n+m;}
        dp[0][0] = 0;
        for(int i=1; i<=m; i++) {dp[i][0] = dp[i-1][0] + 1;
        }
        for(int i=1; i<=n; i++) {dp[0][i] = dp[0][i-1] + 1;
        }
        // 关系式
        for(int i=1; i<=m; i++) {for(int j=1; j<=n; j++) {if(word1.charAt(i-1) != word2.charAt(j-1)) {dp[i][j] = min(dp[i-1][j], dp[i-1][j-1], dp[i][j-1]) + 1;
                }else {dp[i][j] = dp[i-1][j-1];
                }
            }
        }
        return dp[m][n];
    }
}

/**
*  打印门路
**/
class Solution {int[][] dp = new int[510][510];

    public int min(int a, int b, int c) {return Math.min(a, Math.min(b, c));
    }

    public int minDistance(String word1, String word2) {int m = word1.length();
        int n = word2.length();
        
        // 初始值以及边界条件
        if(m * n == 0) {return n+m;}
        dp[0][0] = 0;
        for(int i=1; i<=m; i++) {dp[i][0] = dp[i-1][0] + 1;
        }
        for(int i=1; i<=n; i++) {dp[0][i] = dp[0][i-1] + 1;
        }
        // 关系式
        for(int i=1; i<=m; i++) {for(int j=1; j<=n; j++) {if(word1.charAt(i-1) != word2.charAt(j-1)) {dp[i][j] = min(dp[i-1][j], dp[i-1][j-1], dp[i][j-1]) + 1;
                }else {dp[i][j] = dp[i-1][j-1];
                }
            }
        }
       
        printPath(word1, word2, m, n);
        return dp[m][n];
    }

    public int printPath(String word1, String word2, int i, int j) {if(i == j & i==0) {return 0;}
        if(word1.charAt(i-1) == word2.charAt(j-1)) {System.out.println("A:" + word1.substring(0, i) + ";B:" + word2.substring(0, j) + "开端字符雷同");
            return printPath(word1, word2, i-1, j-1);
        }else {if(dp[i-1][j] == dp[i][j] - 1) {System.out.println("A:" + word1.substring(0, i) + "删除一个字符:" + word1.charAt(i-1) +"变成 B:" + word2.substring(0, j));
                return printPath(word1, word2, i-1, j);
            }
            if(dp[i][j-1]== dp[i][j] - 1) {System.out.println("A:" + word1.substring(0, i) + "插入一个字符:" + word2.charAt(j-1) +"变成 B:" + word2.substring(0, j));
                return printPath(word1, word2, i, j-1);
            }
            if(dp[i-1][j-1] == dp[i][j] - 1) {System.out.println("A:" + word1.substring(0, i) + "批改一个字符变成 B:" + word2.substring(0, j));
                return printPath(word1, word2, i-1, j-1);
            }
        }

        return 0;
    }

}
/**
*  优化:二维 dp 转一维 dp
**/
class Solution {public int min(int a, int b, int c) {return Math.min(a, Math.min(b, c));
    }

    public int minDistance(String word1, String word2) {int m = word1.length();
        int n = word2.length();
        int[] dp = new int[n + 1];

        // 初始值以及边界条件
        if(m * n == 0) {return n+m;}
        dp[0] = 0;
        // 初始化首行
        for(int i=1; i<=n; i++) {dp[i] = i;
        }
        // 关系式
        for(int i=1; i<=m; i++) {int pre = dp[0];
            dp[0] = i;
            for(int j=1; j<=n; j++) {
                int tmp = pre;
                pre = dp[j];
                if(word1.charAt(i-1) == word2.charAt(j-1)) {dp[j] = tmp;
                }else {dp[j] = min(dp[j], dp[j-1], tmp) + 1;
                }

            }
        }
        return dp[n];
    }

    

}

美文佳句

幻想不在纸上、嘴上,而在抽屉里、心里;幻想不是滔滔不绝,而是专一、专一,临时保持沉默。

你好,我是 yltrcc,日常分享技术点滴,欢送关注我的公众号:ylcoder

正文完
 0