一. 背景常识
通常组织会应用关系型数据来存储业务相干的数据,但随着数据的规模越来越大,尤其是像 MySQL 这种,在单表超过 5 千万条记录时,只管对表应用了特定的存储引擎和索引优化,但仍然不可避免的存在性能降落问题。
此时,咱们** 能够通过应用 MapReduce 从 MySQL 中定期迁徙应用频率较低的历史数据到 HDFS 中,一方面能够升高对 MySQL 的存储和计算负载,另一方面,通过分布式计算引擎能够更加高效的解决过来的历史数据。
对于 MapReduce 框架来说,应用 inputform 进行数据读取操作,读取的数据首先由 mapper 解决,而后交给 reducer 解决,最终应用 outputformat 进行数据的输入操作。默认状况下,输入输出的组件实现都是针对文本数据处理的,别离是 TextInputFormat、TextOutputFormat。
为了不便 MapReduce 间接拜访关系型数据库(Mysql,Oracle),Hadoop 提供了 DBInputFormat 和 DBOutputFormat 两个类。其中DBInputFormat 负责从数据库中读取数据,而 DBOutputFormat 负责把数据最终写入数据库中。
二. 读取数据库操作
1. 需要
在 mysql 中 itcast_shop 数据库下创立表 itheima_goods 并加载数据到表中。要求应用 MapReduce 程序将表中的数据导出寄存在指定的文件下。
数据库:
链接:https://pan.baidu.com/s/1ImrI…
提取码:pz9b
因为波及到 java 操作 mysql,因而须要在 pom 依赖中额定增加 mysql-jdbc 驱动。
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.32</version>
</dependency>
2. DBInputFormat 类
InputFormat 类用于从 SQL 表读取数据。DBInputFormat 底层一行一行读取表中的数据,返回 <k,v> 键值对。其中 k 是 LongWritable 类型,表中数据的记录行号,从 0 开始,v 是 DBWritable 类型,示意该行数据对应的对象类型。
此外还须要应用 setInput 办法设置 SQL 查问的语句相干信息。
3. 代码实现
1. 编写 GoodsBean 类
定义 GoodsBean 的实体类,用于封装查问返回的后果(如果要查问表的所有字段,那么属性就跟表的字段一一对应即可)。并且须要实现序列化机制 Writable。
此外,从数据库读取 / 写入数据库的对象应实现 DBWritable。DBWritable 与 Writable 类似,区别在于 write(PreparedStatement)办法采纳 PreparedStatement,而 readFields(ResultSet)采纳 ResultSet。
package com.uuicon.sentiment_upload.db;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapred.lib.db.DBWritable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
public class GoodsBean implements Writable, DBWritable {
private Long goodsId;
private String goodsSn;
private String goodsName;
private Double marketPrice;
private Double shopPrice;
private Long saleNum;
@Override
public String toString() {return goodsId + "\t" + goodsSn + '\t' + goodsName + "\t" + marketPrice + "\t" + shopPrice + "\t" + saleNum;}
public Long getGoodsId() {return goodsId;}
public void setGoodsId(Long goodsId) {this.goodsId = goodsId;}
public String getGoodsSn() {return goodsSn;}
public void setGoodsSn(String goodsSn) {this.goodsSn = goodsSn;}
public String getGoodsName() {return goodsName;}
public void setGoodsName(String goodsName) {this.goodsName = goodsName;}
public Double getMarketPrice() {return marketPrice;}
public void setMarketPrice(Double marketPrice) {this.marketPrice = marketPrice;}
public Double getShopPrice() {return shopPrice;}
public void setShopPrice(Double shopPrice) {this.shopPrice = shopPrice;}
public Long getSaleNum() {return saleNum;}
public void setSaleNum(Long saleNum) {this.saleNum = saleNum;}
public GoodsBean() {}
public GoodsBean(Long goodsId, String goodsSn, String goodsName, Double marketPrice, Double shopPrice, Long saleNum) {
this.goodsId = goodsId;
this.goodsSn = goodsSn;
this.goodsName = goodsName;
this.marketPrice = marketPrice;
this.shopPrice = shopPrice;
this.saleNum = saleNum;
}
public void set(Long goodsId, String goodsSn, String goodsName, Double marketPrice, Double shopPrice, Long saleNum) {
this.goodsId = goodsId;
this.goodsSn = goodsSn;
this.goodsName = goodsName;
this.marketPrice = marketPrice;
this.shopPrice = shopPrice;
this.saleNum = saleNum;
}
@Override
public void write(DataOutput out) throws IOException {out.writeLong(goodsId);
out.writeUTF(goodsSn);
out.writeUTF(goodsName);
out.writeDouble(marketPrice);
out.writeDouble(shopPrice);
out.writeLong(saleNum);
}
@Override
public void readFields(DataInput in) throws IOException {this.goodsId = in.readLong();
this.goodsSn = in.readUTF();
this.goodsName = in.readUTF();
this.marketPrice = in.readDouble();
this.shopPrice = in.readDouble();
this.saleNum = in.readLong();}
@Override
public void write(PreparedStatement ps) throws SQLException {ps.setLong(1, goodsId);
ps.setString(2, goodsSn);
ps.setString(3, goodsName);
ps.setDouble(4, marketPrice);
ps.setDouble(5, shopPrice);
ps.setLong(6, saleNum);
}
@Override
public void readFields(ResultSet resultSet) throws SQLException {this.goodsId = resultSet.getLong(1);
this.goodsSn = resultSet.getString(2);
this.goodsName = resultSet.getString(3);
this.marketPrice = resultSet.getDouble(4);
this.shopPrice = resultSet.getDouble(5);
this.saleNum = resultSet.getLong(6);
}
}
2. 编写 Mapper 类
package com.uuicon.sentiment_upload.db;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class ReadDBMapper extends Mapper<LongWritable, GoodsBean, LongWritable, Text> {Text outValue = new Text();
@Override
protected void map(LongWritable key, GoodsBean value, Context context) throws IOException, InterruptedException {outValue.set(value.toString());
context.write(key, outValue);
}
}
3. 创立程序驱动类
package com.uuicon.sentiment_upload.db;
import com.uuicon.sentiment_upload.covidtopn.CovidTopNDriver;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapred.lib.db.DBConfiguration;
import org.apache.hadoop.mapred.lib.db.DBInputFormat;
import org.apache.hadoop.mapreduce.Job;
import java.io.File;
import java.io.IOException;
public class ReadDBDriver {public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {Configuration conf = new Configuration();
// 数据库信息
DBConfiguration.configureDB(conf,
"com.mysql.jdbc.Driver",
"jdbc:mysql://localhost:3306/itcast_goods",
"root",
"root"
);
// 创立作业类
Job job = Job.getInstance(conf, ReadDBDriver.class.getSimpleName());
// 设置 mr 驱动类
job.setJarByClass(ReadDBDriver.class);
// 设置 mapper 类
job.setMapperClass(ReadDBMapper.class);
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(Text.class);
// todo 设置输出组件
FileOutputFormat.setOutputPath(job,
new Path("E:\\ml\\hadoop\\mysqlout"));
// 设置 Reducer 类 ,todo 本例不须要 reduce , 操作形式是将 tasknumber 设置为 0
job.setNumReduceTasks(0);
// todo 设置输出组件
job.setInputFormatClass(DBInputFormat.class);
// 增加读取数据库相干参数
DBInputFormat.setInput(
job,
GoodsBean.class,
"select goodsId ,goodsSn,goodsName,marketPrice ,shopPrice , saleNum from itheima_goods",
"select count(goodsId) from itheima_goods"
);
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
4. 运行程序
间接在驱动类中右键运行 main 办法,应用 MapReduce 的本地模式执行。也能够将程序应用 maven 插件打包成 jar 包,提交到 yarn 上进行分布式运行。
3. 输入到数据库操作
1. 需要
有一份结构化的数据文件,数据内容对应着 mysql 中一张表的内容,要求应用 MapReduce 程序将文件的内容读取写入到 mysql 中。
就以上例的输入文件作为结构化文件,上面在 mysql 中创立对应的表构造。
表构造:
CREATE TABLE `itheima_goods_mr_write` (`goodsId` bigint(11) NOT NULL AUTO_INCREMENT COMMENT '商品 id',
`goodsSn` varchar(20) NOT NULL COMMENT '商品编号',
`goodsName` varchar(200) NOT NULL COMMENT '商品名称',
`marketPrice` decimal(11,2) NOT NULL DEFAULT '0.00' COMMENT '市场价',
`shopPrice` decimal(11,2) NOT NULL DEFAULT '0.00' COMMENT '门店价',
`saleNum` int(11) NOT NULL DEFAULT '0' COMMENT '总销售量',
PRIMARY KEY (`goodsId`)
) ENGINE=InnoDB AUTO_INCREMENT=115909 DEFAULT CHARSET=utf8;
2. DBOutputFormat 类
OutputFormat,它将 reduce 输入发送到 SQL 表。DBOutputFormat 承受 <key,value> 键值对,其中 key 必须具备扩大 DBWritable 的类型。
此外还须要应用 setOutput 办法设置 SQL 插入语句相干信息,比方表、字段等。
3. 代码实现
1. 编写 GoodsBean 类
定义 GoodsBean 的实体类,用于封装插入表中的数据(对象属性跟表的字段一一对应即可)。并且须要实现序列化机制 Writable。
此外,从数据库读取 / 写入数据库的对象应实现 DBWritable。DBWritable 与 Writable 类似,区别在于 write(PreparedStatement)办法采纳 PreparedStatement,而 readFields(ResultSet)采纳 ResultSet。
package com.uuicon.sentiment_upload.db;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapred.lib.db.DBWritable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
public class GoodsBean implements Writable, DBWritable {
private Long goodsId;
private String goodsSn;
private String goodsName;
private Double marketPrice;
private Double shopPrice;
private Long saleNum;
@Override
public String toString() {return goodsId + "\t" + goodsSn + '\t' + goodsName + "\t" + marketPrice + "\t" + shopPrice + "\t" + saleNum;}
public Long getGoodsId() {return goodsId;}
public void setGoodsId(Long goodsId) {this.goodsId = goodsId;}
public String getGoodsSn() {return goodsSn;}
public void setGoodsSn(String goodsSn) {this.goodsSn = goodsSn;}
public String getGoodsName() {return goodsName;}
public void setGoodsName(String goodsName) {this.goodsName = goodsName;}
public Double getMarketPrice() {return marketPrice;}
public void setMarketPrice(Double marketPrice) {this.marketPrice = marketPrice;}
public Double getShopPrice() {return shopPrice;}
public void setShopPrice(Double shopPrice) {this.shopPrice = shopPrice;}
public Long getSaleNum() {return saleNum;}
public void setSaleNum(Long saleNum) {this.saleNum = saleNum;}
public GoodsBean() {}
public GoodsBean(Long goodsId, String goodsSn, String goodsName, Double marketPrice, Double shopPrice, Long saleNum) {
this.goodsId = goodsId;
this.goodsSn = goodsSn;
this.goodsName = goodsName;
this.marketPrice = marketPrice;
this.shopPrice = shopPrice;
this.saleNum = saleNum;
}
public void set(Long goodsId, String goodsSn, String goodsName, Double marketPrice, Double shopPrice, Long saleNum) {
this.goodsId = goodsId;
this.goodsSn = goodsSn;
this.goodsName = goodsName;
this.marketPrice = marketPrice;
this.shopPrice = shopPrice;
this.saleNum = saleNum;
}
@Override
public void write(DataOutput out) throws IOException {out.writeLong(goodsId);
out.writeUTF(goodsSn);
out.writeUTF(goodsName);
out.writeDouble(marketPrice);
out.writeDouble(shopPrice);
out.writeLong(saleNum);
}
@Override
public void readFields(DataInput in) throws IOException {this.goodsId = in.readLong();
this.goodsSn = in.readUTF();
this.goodsName = in.readUTF();
this.marketPrice = in.readDouble();
this.shopPrice = in.readDouble();
this.saleNum = in.readLong();}
@Override
public void write(PreparedStatement ps) throws SQLException {ps.setLong(1, goodsId);
ps.setString(2, goodsSn);
ps.setString(3, goodsName);
ps.setDouble(4, marketPrice);
ps.setDouble(5, shopPrice);
ps.setLong(6, saleNum);
}
@Override
public void readFields(ResultSet resultSet) throws SQLException {this.goodsId = resultSet.getLong(1);
this.goodsSn = resultSet.getString(2);
this.goodsName = resultSet.getString(3);
this.marketPrice = resultSet.getDouble(4);
this.shopPrice = resultSet.getDouble(5);
this.saleNum = resultSet.getLong(6);
}
}
2. Mapper 类
package com.uuicon.sentiment_upload.db;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class WriteDBMapper extends Mapper<LongWritable, Text, NullWritable, GoodsBean> {NullWritable outKey = NullWritable.get();
GoodsBean outValue = new GoodsBean();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {Counter sc = context.getCounter("mr_to_sql", "SUCCESS");
Counter fc = context.getCounter("mr_to_sql", "FAILED");
String[] fields = value.toString().split("\\s+");
if (fields.length > 6) {
// 失常数据
outValue.set(Long.parseLong(fields[1]),
fields[2],
fields[3],
Double.parseDouble(fields[4]),
Double.parseDouble(fields[5]),
Long.parseLong(fields[6])
);
context.write(outKey, outValue);
sc.increment(1);
} else {
// 异样数据
fc.increment(1);
}
}
}
3. reudce 类
package com.uuicon.sentiment_upload.db;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**
* todo 在应用 DBOutputFormat 的时候, 要求输入的 key 必须实现 DBWritable 因为只会把 key 写入数据库
*/
public class WriteDBReducer extends Reducer<NullWritable, GoodsBean, GoodsBean, NullWritable> {
@Override
protected void reduce(NullWritable key, Iterable<GoodsBean> values, Context context) throws IOException, InterruptedException {for (GoodsBean value : values) {context.write(value, key);
}
}
}
4. 驱动类
package com.uuicon.sentiment_upload.db;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapred.lib.db.DBConfiguration;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.db.DBOutputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
public class WriteDBDriver {public static void main(String[] args) throws Exception {Configuration conf = new Configuration();
// 数据库信息
DBConfiguration.configureDB(conf,
"com.mysql.jdbc.Driver",
"jdbc:mysql://localhost:3306/itcast_goods?useUnicode=true&characterEncoding=utf8",
"root",
"root"
);
// 创立作业类
Job job = Job.getInstance(conf, WriteDBDriver.class.getSimpleName());
// 设置 mr 驱动类
job.setJarByClass(WriteDBDriver.class);
// 设置 mapper 类
job.setMapperClass(WriteDBMapper.class);
job.setMapOutputKeyClass(NullWritable.class);
job.setMapOutputValueClass(GoodsBean.class);
// 设置 Reduce 相干
job.setReducerClass(WriteDBReducer.class);
job.setOutputKeyClass(GoodsBean.class);
job.setOutputValueClass(NullWritable.class);
// 设置以后作业的文件门路
FileInputFormat.setInputPaths(job, new Path("E:\\ml\\hadoop\\mysqlout"));
// todo 设置程序输入类
job.setOutputFormatClass(DBOutputFormat.class);
// 配置以后作业, 写入数据库表 itheima_goods_mr_write
DBOutputFormat.setOutput(
job,
"itheima_goods_mr_write",
"goodsId","goodsSn","goodsName","marketPrice","shopPrice","saleNum"
);
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
5. 运行后果