关于golang:gozero源码阅读负载均衡上第五期

8次阅读

共计 9383 个字符,预计需要花费 24 分钟才能阅读完成。

在浏览 go-zero 源码之前咱们先来看看罕用的负载平衡算法,看看其原理,以及是如何实现,而后咱们在用这些负载平衡算法来和 go-zero 的比照下,看看各自的优缺点是啥。

轮询

proxy 服务与 ndoe 服务配置文件

{
    "proxy": {"url": "127.0.0.1:8080"},
    "nodes": [
        {"url": "127.0.0.1:8081"},
        {"url": "127.0.0.1:8082"},
        {"url": "127.0.0.1:8083"}
    ]
}

proxy 服务、ndoe 服务、轮询算法代码

// 配置
type Config struct {
    Proxy Proxy   `json:"proxy"`
    Nodes []*Node `json:"nodes"`}

// proxy 服务器配置
type Proxy struct {Url string `json:"url"`}

// node 服务器配置
type Node struct {
    URL      string `json:"url"`
    IsDead   bool
    useCount int
    mu       sync.RWMutex
}

var cfg Config

func init() {
    // 加载配置文件
    data, err := ioutil.ReadFile("./config.json")
    if err != nil {log.Fatal(err.Error())
    }
    json.Unmarshal(data, &cfg)
}

// 设置 node 服务器宕机状态
func (node *Node) SetDead(b bool) {node.mu.Lock()
    node.IsDead = b
    node.mu.Unlock()}

// 获取 node 服务器是否宕机
func (node *Node) GetIsDead() bool {node.mu.RLock()
    isAlive := node.IsDead
    node.mu.RUnlock()
    return isAlive
}

var (
    mu  sync.Mutex
    idx int = 0
)

// 轮询算法
func rrlbbHandler(w http.ResponseWriter, r *http.Request) {maxLen := len(cfg.Nodes)
    // Round Robin
    mu.Lock()
    currentNode := cfg.Nodes[idx%maxLen] // 循环数组
    if currentNode.GetIsDead() {
        idx++ // 如果 node 宕机,则轮询到下一个 node
        currentNode = cfg.Nodes[idx%maxLen]
    }
    currentNode.useCount++
    targetURL, err := url.Parse("http://" + currentNode.URL)
    log.Println(targetURL.Host)
    if err != nil {log.Fatal(err.Error())
    }
    idx++
    mu.Unlock()
    reverseProxy := httputil.NewSingleHostReverseProxy(targetURL)
    reverseProxy.ErrorHandler = func(w http.ResponseWriter, r *http.Request, e error) {log.Printf("%v is dead.", targetURL)
        currentNode.SetDead(true)
        rrlbbHandler(w, r) // 节点宕机 递归调用本人
    }
    reverseProxy.ServeHTTP(w, r)
}

// node 是否存活
func isAlive(url *url.URL) bool {conn, err := net.DialTimeout("tcp", url.Host, time.Minute*1)
    if err != nil {log.Printf("Unreachable to %v, error %s:", url.Host, err.Error())
        return false
    }
    defer conn.Close()
    return true
}

// node 探活
func healthCheck() {t := time.NewTicker(time.Minute * 1)
    for {
        select {
        case <-t.C:
            for _, node := range cfg.Nodes {pingURL, err := url.Parse(node.URL)
                if err != nil {log.Fatal(err.Error())
                }
                isAlive := isAlive(pingURL)
                node.SetDead(!isAlive)
                msg := "ok"
                if !isAlive {msg = "dead"}
                log.Printf("%v checked %s by healthcheck", node.URL, msg)
            }
        }
    }
}

// 启动 proxy 服务
func proxyServerStart() {
    var err error
    go healthCheck()
    s := http.Server{
        Addr:    cfg.Proxy.Url,
        Handler: http.HandlerFunc(rrlbbHandler),
    }
    if err = s.ListenAndServe(); err != nil {log.Fatal(err.Error())
    }
}

// 启动所有 node 服务
func nodeServerStart() {http.HandleFunc("/ping", func(w http.ResponseWriter, r *http.Request) {w.Write([]byte("pong"))
    })
    wg := new(sync.WaitGroup)
    wg.Add(len(cfg.Nodes))
    for i, node := range cfg.Nodes {go func() {
            if i > 0 {
                  // 模仿一个 node 宕机 
                log.Fatal(http.ListenAndServe(node.URL, nil))
            }
            wg.Done()}()
        time.Sleep(time.Millisecond * 100)
    }
    wg.Wait()}

最外围的算法就是这一段,非常简单,轮询的实质其实是循环数组

    currentNode := cfg.Nodes[idx%maxLen] // 数组循环
    if currentNode.GetIsDead() {
        idx++ // 如果 node 宕机,则轮询到下一个 node
        currentNode = cfg.Nodes[idx%maxLen]
    }

咱们来编写测试代码来测试下吧

func Test_RoundRobinBalancer(t *testing.T) {go nodeServerStart()
    time.Sleep(time.Millisecond * 200)
    go proxyServerStart()
    time.Sleep(time.Millisecond * 100)
    for _, tt := range [...]struct {
        name, method, uri string
        body              io.Reader
        want              *http.Request
        wantBody          string
    }{
        {
            name:     "GET with ping url",
            method:   "GET",
            uri:      "http://127.0.0.1:8080/ping",
            body:     nil,
            wantBody: "pong",
        },
    } {t.Run(tt.name, func(t *testing.T) {
            for i := 1; i <= 10; i++ {body, err := utils.HttpRequest(tt.method, tt.uri, tt.body)
                if err != nil {t.Errorf("ReadAll: %v", err)
                }
                if string(body) != tt.wantBody {t.Errorf("Body = %q; want %q", body, tt.wantBody)
                }
            }
            for _, node := range cfg.Nodes {log.Printf("node: %s useCount: %d", node.URL, node.useCount)
            }
        })
    }
}

测试后果如下:

-------- node 调度程序 --------
2022/04/06 19:50:24 127.0.0.1:8081
2022/04/06 19:50:24 http://127.0.0.1:8081 is dead.
2022/04/06 19:50:24 127.0.0.1:8082
2022/04/06 19:50:24 127.0.0.1:8083
2022/04/06 19:50:24 127.0.0.1:8082
2022/04/06 19:50:24 127.0.0.1:8083
2022/04/06 19:50:24 127.0.0.1:8082
2022/04/06 19:50:24 127.0.0.1:8083
2022/04/06 19:50:24 127.0.0.1:8082
2022/04/06 19:50:24 127.0.0.1:8083
2022/04/06 19:50:24 127.0.0.1:8082
2022/04/06 19:50:24 127.0.0.1:8083
-------- node 调用次数 --------
2022/04/06 19:50:24 node: 127.0.0.1:8081 useCount: 1
2022/04/06 19:50:24 node: 127.0.0.1:8082 useCount: 5
2022/04/06 19:50:24 node: 127.0.0.1:8083 useCount: 5

第一个 node 宕机,这一段输入了宕机状态

2022/04/06 19:28:48 127.0.0.1:8081
2022/04/06 19:28:48 http://127.0.0.1:8081 is dead.

从这一段能够看出节点服务是被交替调用

2022/04/06 19:28:48 127.0.0.1:8082
2022/04/06 19:28:48 127.0.0.1:8083
2022/04/06 19:28:48 127.0.0.1:8082
2022/04/06 19:28:48 127.0.0.1:8083
2022/04/06 19:28:48 127.0.0.1:8082
2022/04/06 19:28:48 127.0.0.1:8083
2022/04/06 19:28:48 127.0.0.1:8082
2022/04/06 19:28:48 127.0.0.1:8083
2022/04/06 19:28:48 127.0.0.1:8082
2022/04/06 19:28:48 127.0.0.1:8083

在这一段能够看出 node 1 被调用了一次,而后递归调用本人,申请别离被 node2 和 node3 各调用 5 次。

阐明咱们的轮询调度算法是胜利的,大家能够复制代码,本人尝试运行下

2022/04/06 19:28:48 node: 127.0.0.1:8081 useCount: 1
2022/04/06 19:28:48 node: 127.0.0.1:8082 useCount: 5
2022/04/06 19:28:48 node: 127.0.0.1:8083 useCount: 5

随机轮询

随机轮询算法也十分的 easy

咱们在 rrlbHandle 函数上面增加如下函数

// 随机轮询算法
func rrrlbHandler(w http.ResponseWriter, r *http.Request) {maxLen := len(cfg.Nodes)
    // Rand Round Robin
    mu.Lock()
    idx, _ := rand.Int(rand.Reader, big.NewInt(int64(maxLen))) // 获取随机数
    currentNode := cfg.Nodes[int(idx.Int64())%maxLen] // 获取随机节点
    if currentNode.GetIsDead() {idx, _ = rand.Int(rand.Reader, big.NewInt(int64(maxLen)))
        currentNode = cfg.Nodes[int(idx.Int64())%maxLen]
    }
    currentNode.useCount++
    targetURL, err := url.Parse("http://" + cfg.Nodes[int(idx.Int64())%maxLen].URL)
    log.Println(targetURL.Host)
    if err != nil {log.Fatal(err.Error())
    }
    mu.Unlock()
    reverseProxy := httputil.NewSingleHostReverseProxy(targetURL)
    reverseProxy.ErrorHandler = func(w http.ResponseWriter, r *http.Request, e error) {
        // NOTE: It is better to implement retry.
        log.Printf("%v is dead.", targetURL)
        currentNode.SetDead(true)
        rrrlbHandler(w, r)
    }
    reverseProxy.ServeHTTP(w, r)
}

锁机轮询的外围算法如下

    idx, _ := rand.Int(rand.Reader, big.NewInt(int64(maxLen))) // 获取随机数
    currentNode := cfg.Nodes[int(idx.Int64())%maxLen] // 获取随机节点
    if currentNode.GetIsDead() {idx, _ = rand.Int(rand.Reader, big.NewInt(int64(maxLen)))
        currentNode = cfg.Nodes[int(idx.Int64())%maxLen]
    }

编写测试代码来测试下

首先批改 proxyServerStart 服务函数

func proxyServerStart() {
    var err error
    go healthCheck()
    s := http.Server{
        Addr:    cfg.Proxy.Url,
        // Handler: http.HandlerFunc(rrlbbHandler), // 敞开轮询调度算法
        Handler: http.HandlerFunc(rrrlbHandler), // 开启随机轮询调度算法
    }
    if err = s.ListenAndServe(); err != nil {log.Fatal(err.Error())
    }
}

测试代码与轮询算法测试代码放弃不变

测试后果如下:

-------- node 调度程序 --------
2022/04/06 19:49:51 127.0.0.1:8081
2022/04/06 19:49:51 http://127.0.0.1:8081 is dead.
2022/04/06 19:49:51 127.0.0.1:8082
2022/04/06 19:49:51 127.0.0.1:8081
2022/04/06 19:49:51 http://127.0.0.1:8081 is dead.
2022/04/06 19:49:51 127.0.0.1:8082
2022/04/06 19:49:51 127.0.0.1:8083
2022/04/06 19:49:51 127.0.0.1:8083
2022/04/06 19:49:51 127.0.0.1:8082
2022/04/06 19:49:51 127.0.0.1:8083
2022/04/06 19:49:51 127.0.0.1:8083
2022/04/06 19:49:51 127.0.0.1:8081
2022/04/06 19:49:51 http://127.0.0.1:8081 is dead.
2022/04/06 19:49:51 127.0.0.1:8083
2022/04/06 19:49:51 127.0.0.1:8081
2022/04/06 19:49:51 http://127.0.0.1:8081 is dead.
2022/04/06 19:49:51 127.0.0.1:8082
2022/04/06 19:49:51 127.0.0.1:8082
-------- node 调用次数 --------
2022/04/06 19:49:51 node: 127.0.0.1:8081 useCount: 4
2022/04/06 19:49:51 node: 127.0.0.1:8082 useCount: 5
2022/04/06 19:49:51 node: 127.0.0.1:8083 useCount: 5

从测试后果中能够看出,node 调用程序是随机的,node 调用次数负载到未宕机的 node2、node3 上总计被调用 10 次

阐明咱们的算法也是胜利的

加权轮询

加权轮询咱们也基于轮询的代码来批改

批改配置文件

{
    "proxy": {"url": "127.0.0.1:8080"},
    "nodes": [
        {
            "url": "127.0.0.1:8081",
            "weight": 2
        },
        {
            "url": "127.0.0.1:8082",
            "weight": 3
        },
        {
            "url": "127.0.0.1:8083",
            "weight": 5
        }
    ]
}

咱们再给 Node 的构造体加两个属性

  • currentWeightnode 长期权重
  • effectiveWeightnode 无效权重
  • Weight node 权重
type Node struct {
    currentWeight   int // node 长期权重
    effectiveWeight int // node 无效权重
    Weight          int    `json:"weight"` // node 权重
    IsDead          bool
    useCount        int
    URL             string `json:"url"`
    mu              sync.RWMutex
}

批改 init 函数如下如下代码

func init() {data, err := ioutil.ReadFile("./config.json")
    if err != nil {log.Fatal(err.Error())
    }
    json.Unmarshal(data, &cfg)
    for _, node := range cfg.Nodes {node.currentWeight = node.Weight}
}

批改 rrlbHandler 函数为如下代码

func rrlbHandler(w http.ResponseWriter, r *http.Request) {mu.Lock()
    currentNode := cfg.Next()
    targetURL, err := url.Parse("http://" + currentNode.URL)
    if err != nil {log.Fatal(err.Error())
    }
    log.Println(targetURL.Host)
    mu.Unlock()
    reverseProxy := httputil.NewSingleHostReverseProxy(targetURL)
    reverseProxy.ErrorHandler = func(w http.ResponseWriter, r *http.Request, e error) {
        // NOTE: It is better to implement retry.
        log.Printf("%v is dead.", targetURL)
        currentNode.SetDead(true)
        rrlbHandler(w, r)
    }
    reverseProxy.ServeHTTP(w, r)
}

增加 Next 函数代码如下,此函数即为加权轮询外围算法

留神:在获取最大长期权重 node 的过程中咱们要保障 最大长期权重 node 的长期权重要继续递加 ,而且 各个 node 的长期权重要继续递增,以保障调度的平滑性

func (c *Config) Next() *Node {
    totalEffectiveWeight := 0
    var maxWeightNode *Node
    for _, node := range c.Nodes {
        // 1. 统计所有 node 无效权证之和
        totalEffectiveWeight += node.effectiveWeight
        // 2. 变更 node 长期权重 =node 长期权重 +node 无效权重
        // node 长期权重递增,交替加权,以保障调度平滑性
        node.currentWeight += node.effectiveWeight
        // 3.node 无效权重默认与 node 权长期重雷同,通信异样时 -1, 通信胜利 +1, 直到复原到 weight 大小
        if node.effectiveWeight < node.Weight {if node.GetIsDead() {node.effectiveWeight--} else {node.effectiveWeight++}
        }
        // 4. 抉择最大长期权重 node
        if maxWeightNode == nil || node.currentWeight > maxWeightNode.currentWeight {maxWeightNode = node}
    }
    if maxWeightNode == nil {return nil}
    // 5. 变更 node 长期权重 =node 长期权重 -node 无效权重之和
    // 最大权重 node 长期权重递加,交替减权,以保障调度平滑性
    maxWeightNode.currentWeight -= totalEffectiveWeight
    if maxWeightNode.GetIsDead() {maxWeightNode = c.Next()
    }
    maxWeightNode.useCount++
    return maxWeightNode
}

测试后果如下:

-------- node 调度程序 --------
2022/04/06 21:50:00 127.0.0.1:8083
2022/04/06 21:50:00 127.0.0.1:8083
2022/04/06 21:50:00 127.0.0.1:8083
2022/04/06 21:50:00 127.0.0.1:8082
2022/04/06 21:50:00 127.0.0.1:8083
2022/04/06 21:50:00 127.0.0.1:8082
2022/04/06 21:50:00 127.0.0.1:8083
2022/04/06 21:50:00 127.0.0.1:8083
2022/04/06 21:50:00 127.0.0.1:8081
2022/04/06 21:50:00 http://127.0.0.1:8081 is dead.
2022/04/06 21:50:00 127.0.0.1:8083
2022/04/06 21:50:00 127.0.0.1:8082
-------- node 调用次数 --------
2022/04/06 21:50:00 node: 127.0.0.1:8081 useCount: 1
2022/04/06 21:50:00 node: 127.0.0.1:8082 useCount: 3
2022/04/06 21:50:00 node: 127.0.0.1:8083 useCount: 7

从后果中能够看出,调度还是比拟平滑的,而且对应权重 node 在调度中调用次数也比拟正当

正文完
 0