共计 13501 个字符,预计需要花费 34 分钟才能阅读完成。
abi 是啥具体我也不先说了,先按我的了解翻译了一遍,他就是寄存器还是堆栈调配的规约,我也是在学习,大家审慎观看哦
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflect
import (
"internal/abi"
"internal/goexperiment"
"unsafe"
)
// These variables are used by the register assignment
// algorithm in this file.
//
// They should be modified with care (no other reflect code
// may be executing) and are generally only modified
// when testing this package.
//
// They should never be set higher than their internal/abi
// constant counterparts, because the system relies on a
// structure that is at least large enough to hold the
// registers the system supports.
//
// Currently they're set to zero because using the actual
// constants will break every part of the toolchain that
// uses reflect to call functions (e.g. go test, or anything
// that uses text/template). The values that are currently
// commented out there should be the actual values once
// we're ready to use the register ABI everywhere.
// 这些变量都是用来作为寄存器调配算法的
var (
intArgRegs = abi.IntArgRegs * goexperiment.RegabiArgsInt // 整数寄存器的数量
floatArgRegs = abi.FloatArgRegs * goexperiment.RegabiArgsInt // 浮点数寄存器的数量
floatRegSize = uintptr(abi.EffectiveFloatRegSize * goexperiment.RegabiArgsInt) // 浮点数寄存器的宽度。可能为 0、4、8。0 代表没有,或者是通过 softfloat ABI 进行传递
)
// ABI 应用程序二进制接口。go 运行时必须恪守的编程约定。ABI 总是蕴含一系列的零碎调用和应用这些零碎调用的办法,// 以及对于程序能够应用的内存地址和应用机器寄存器的规定。// abiStep represents an ABI "instruction." Each instruction
// describes one part of how to translate between a Go value
// in memory and a call frame.
// abiStep 就是一个 ABI 指令的形容。他形容了 go 的值和函数栈帧之间的转换
type abiStep struct {
kind abiStepKind // 分几种类型,栈传递,整数寄存器值传递,整数寄存器指针传递,浮点数寄存器传递
// offset and size together describe a part of a Go value
// in memory.
// 传递值在内存中的偏移和大小
offset uintptr
size uintptr // size in bytes of the part
// These fields describe the ABI side of the translation.
// 如果是栈传递,他的偏移地址
stkOff uintptr // stack offset, used if kind == abiStepStack
// 如果是整数寄存器传递(包含整数指针传递),他的索引
ireg int // integer register index, used if kind == abiStepIntReg or kind == abiStepPointer
// 如果是浮点数寄存器传递,他的索引
freg int // FP register index, used if kind == abiStepFloatReg
}
// abiStepKind is the "op-code" for an abiStep instruction.
type abiStepKind int
const (
abiStepBad abiStepKind = iota
abiStepStack // copy to/from stack
abiStepIntReg // copy to/from integer register
abiStepPointer // copy pointer to/from integer register
abiStepFloatReg // copy to/from FP register
)
// abiSeq represents a sequence of ABI instructions for copying
// from a series of reflect.Values to a call frame (for call arguments)
// or vice-versa (for call results).
//
// An abiSeq should be populated by calling its addArg method.
// abiSeq 就是一些列 abiStep 的总和,加上了堆栈空间,和寄存器的应用
type abiSeq struct {
// steps is the set of instructions.
//
// The instructions are grouped together by whole arguments,
// with the starting index for the instructions
// of the i'th Go value available in valueStart.
//
// For instance, if this abiSeq represents 3 arguments
// passed to a function, then the 2nd argument's steps
// begin at steps[valueStart[1]].
//
// Because reflect accepts Go arguments in distinct
// Values and each Value is stored separately, each abiStep
// that begins a new argument will have its offset
// field == 0.
// 这块就是理论的 ABI 形容列表,他是一组参数传递,或者是返回值传递
steps []abiStep
// 这个标记了第 i 个参数或返回值的 abiStep 地位,好比以后是参数传递,要传第一个参数,那么就是 steps[valueStart[0]],以此类推
valueStart []int
// 栈应用空间
stackBytes uintptr // stack space used
// 寄存器应用状况
iregs, fregs int // registers used
}
// 这个就是调试
func (a *abiSeq) dump() {
for i, p := range a.steps {println("part", i, p.kind, p.offset, p.size, p.stkOff, p.ireg, p.freg)
}
print("values")
for _, i := range a.valueStart {print(i, " ")
}
println()
println("stack", a.stackBytes)
println("iregs", a.iregs)
println("fregs", a.fregs)
}
// stepsForValue returns the ABI instructions for translating
// the i'th Go argument or return value represented by this
// abiSeq to the Go ABI.
// stepsForValue 失去第 i 个参数产地的 ABI 指令形容序列
// 失去第 i 个参数的 ABI 指令形容序列
func (a *abiSeq) stepsForValue(i int) []abiStep {
// s 是开始地位
s := a.valueStart[i]
var e int
// a.steps 和 a.valueStart 数量不对应,反正目标是为了获取下一个参数传递形容信息的一组 ABI 序列
if i == len(a.valueStart)-1 {e = len(a.steps)
} else {e = a.valueStart[i+1]
}
return a.steps[s:e]
}
// addArg extends the abiSeq with a new Go value of type t.
//
// If the value was stack-assigned, returns the single
// abiStep describing that translation, and nil otherwise.
// 用一个新的 t 类型的值扩大 abiSeq 序列
// 如果是栈调配,就返回单个 abiStep,不然就返回 nil
// 给 seq 增加一个参数传递的 ABI 序列
func (a *abiSeq) addArg(t *rtype) *abiStep {
// We'll always be adding a new value, so do that first.
// 获取总长度,因为要增加的参数必定是在这个地位开始的。这个就是更新 a.valueStart 的标记
pStart := len(a.steps)
a.valueStart = append(a.valueStart, pStart)
// 如果增加的类型的长度为 0
if t.size == 0 {
// If the size of the argument type is zero, then
// in order to degrade gracefully into ABI0, we need
// to stack-assign this type. The reason is that
// although zero-sized types take up no space on the
// stack, they do cause the next argument to be aligned.
// So just do that here, but don't bother actually
// generating a new ABI step for it (there's nothing to
// actually copy).
//
// We cannot handle this in the recursive case of
// regAssign because zero-sized *fields* of a
// non-zero-sized struct do not cause it to be
// stack-assigned. So we need a special case here
// at the top.
// 如果这个类型大小为 0,为了降级到 ABI0(稳固的 ABI 版本),咱们须要堆栈调配,尽管他
// 不占据空间,但他会影响下一次内存对其,因而咱们还是须要执行此操作,但没有必要生成一个 step
// 大小尽管为 0. 然而会影响对齐,咱们还是要对他进行肯定的解决
// align 将 a.stackBytes 舍入为 uintptr(t.align) 的倍数,就是将 a.stackBytes 增大到增加元素的对其倍数上
a.stackBytes = align(a.stackBytes, uintptr(t.align))
return nil
}
// Hold a copy of "a" so that we can roll back if
// register assignment fails.
// 保留 a 的正本,不便咱们寄存器调配失败时回滚
aOld := *a
// 寄存器调配开始,offset=0,调配失败的话,就须要回滚,而后进行栈调配
if !a.regAssign(t, 0) {
// Register assignment failed. Roll back any changes
// and stack-assign.
*a = aOld
// 栈调配胜利会返回最初一个步骤的 step
a.stackAssign(t.size, uintptr(t.align))
return &a.steps[len(a.steps)-1]
}
return nil
}
// addRcvr extends the abiSeq with a new method call
// receiver according to the interface calling convention.
//
// If the receiver was stack-assigned, returns the single
// abiStep describing that translation, and nil otherwise.
// Returns true if the receiver is a pointer.
// 增加一个接受者,这个是办法应用的
func (a *abiSeq) addRcvr(rcvr *rtype) (*abiStep, bool) {
// The receiver is always one word.
// 接受者永远是一个 word
a.valueStart = append(a.valueStart, len(a.steps))
var ok, ptr bool
// 返回 rcvr 是否在接口中,并且其中是否蕴含指针,如果有指针或者是在接口中,进行寄存器传值,ptrMap 0b1,二进制的 1 代表这个是一个指针,波及到 GC 回收
if ifaceIndir(rcvr) || rcvr.pointers() {ok = a.assignIntN(0, ptrSize, 1, 0b1)
ptr = true
} else {// TODO(mknyszek): Is this case even possible?
// The interface data work never contains a non-pointer
// value. This case was copied over from older code
// in the reflect package which only conditionally added
// a pointer bit to the reflect.(Value).Call stack frame's
// GC bitmap.
ok = a.assignIntN(0, ptrSize, 1, 0b0)
ptr = false
}
if !ok {a.stackAssign(ptrSize, ptrSize)
return &a.steps[len(a.steps)-1], ptr
}
return nil, ptr
}
// regAssign attempts to reserve argument registers for a value of
// type t, stored at some offset.
//
// It returns whether or not the assignment succeeded, but
// leaves any changes it made to a.steps behind, so the caller
// must undo that work by adjusting a.steps if it fails.
//
// This method along with the assign* methods represent the
// complete register-assignment algorithm for the Go ABI.
// 他将 t 类型的值保留在偏移量 offset 的地位上,这就是寄存器调配算法
func (a *abiSeq) regAssign(t *rtype, offset uintptr) bool {
// 看 t 的 kind
switch t.Kind() {
// 和指针相干的整数,他们调配都是,0b1
case UnsafePointer, Ptr, Chan, Map, Func:
return a.assignIntN(offset, t.size, 1, 0b1)
// 一般整数,就是 0b0
case Bool, Int, Uint, Int8, Uint8, Int16, Uint16, Int32, Uint32, Uintptr:
return a.assignIntN(offset, t.size, 1, 0b0)
// 这个就是看大小辨别了,不过个别都是第二个抉择
case Int64, Uint64:
switch ptrSize {
case 4:
return a.assignIntN(offset, 4, 2, 0b0)
case 8:
return a.assignIntN(offset, 8, 1, 0b0)
}
case Float32, Float64:
return a.assignFloatN(offset, t.size, 1)
case Complex64:
return a.assignFloatN(offset, 4, 2)
case Complex128:
return a.assignFloatN(offset, 8, 2)
case String:
// 字符串,整形寄存器
return a.assignIntN(offset, ptrSize, 2, 0b01)
case Interface:
// interface 是 2,其余有指针都是 1,一般数据是 0
return a.assignIntN(offset, ptrSize, 2, 0b10)
case Slice:
return a.assignIntN(offset, ptrSize, 3, 0b01)
case Array:
// 数组的话,首先先把 t 的 rtype 类型转换为 arrayType 类型,他一开始的确是 rtype,后续就是本人的类型信息
// 相当于扩大内存了
tt := (*arrayType)(unsafe.Pointer(t))
// 判断 tt 的长度,如果长度为 0,不必调配,长度为 1,就调配一下,如果长度大于 1,就返回失败,通过栈调配吧
switch tt.len {
case 0:
// There's nothing to assign, so don't modify
// a.steps but succeed so the caller doesn't
// try to stack-assign this value.
return true
case 1:
return a.regAssign(tt.elem, offset)
default:
return false
}
case Struct:
// 构造体数据,也是先映射回去,再把所有的一个一个存进去,如果有一个失败,就返回失败,里面会回滚的
st := (*structType)(unsafe.Pointer(t))
for i := range st.fields {f := &st.fields[i]
if !a.regAssign(f.typ, offset+f.offset()) {return false}
}
return true
default:
print("t.Kind ==", t.Kind(), "\n")
panic("unknown type kind")
}
panic("unhandled register assignment path")
}
// assignIntN assigns n values to registers, each "size" bytes large,
// from the data at [offset, offset+n*size) in memory. Each value at
// [offset+i*size, offset+(i+1)*size) for i < n is assigned to the
// next n integer registers.
//
// Bit i in ptrMap indicates whether the i'th value is a pointer.
// n must be <= 8.
//
// Returns whether assignment succeeded.
// 就是调配从 offset 开始的内存地址,调配 n 个寄存器,每个寄存器的大小为 size
func (a *abiSeq) assignIntN(offset, size uintptr, n int, ptrMap uint8) bool {
if n > 8 || n < 0 {panic("invalid n")
}
// ptrMap != 0 代表着有指针,须要,并且
if ptrMap != 0 && size != ptrSize {panic("non-empty pointer map passed for non-pointer-size values")
}
// a.iregs+n 是咱们以后 a 占有的寄存器数量,intArgRegs 是总数量
if a.iregs+n > intArgRegs {return false}
// 开始调配
for i := 0; i < n; i++ {
kind := abiStepIntReg
if ptrMap&(uint8(1)<<i) != 0 {kind = abiStepPointer}
a.steps = append(a.steps, abiStep{
kind: kind,
offset: offset + uintptr(i)*size,
size: size,
ireg: a.iregs,
})
// 寄存器应用数量
a.iregs++
}
return true
}
// assignFloatN assigns n values to registers, each "size" bytes large,
// from the data at [offset, offset+n*size) in memory. Each value at
// [offset+i*size, offset+(i+1)*size) for i < n is assigned to the
// next n floating-point registers.
//
// Returns whether assignment succeeded.
// 跟下面的差不多
func (a *abiSeq) assignFloatN(offset, size uintptr, n int) bool {
if n < 0 {panic("invalid n")
}
if a.fregs+n > floatArgRegs || floatRegSize < size {return false}
for i := 0; i < n; i++ {
a.steps = append(a.steps, abiStep{
kind: abiStepFloatReg,
offset: offset + uintptr(i)*size,
size: size,
freg: a.fregs,
})
a.fregs++
}
return true
}
// stackAssign reserves space for one value that is "size" bytes
// large with alignment "alignment" to the stack.
//
// Should not be called directly; use addArg instead.
// 栈调配,这个不应该间接调用,应该调用 addArg 或者 addRcvr
// 这个栈调配
func (a *abiSeq) stackAssign(size, alignment uintptr) {
// 第一步内存对其
a.stackBytes = align(a.stackBytes, alignment)
// 增加一个形容到 abiSeq
a.steps = append(a.steps, abiStep{
kind: abiStepStack,
offset: 0, // Only used for whole arguments, so the memory offset is 0.
size: size,
stkOff: a.stackBytes,
})
a.stackBytes += size
}
// abiDesc describes the ABI for a function or method.
// 这个才是为函数和办法定义的一组 abi 指令形容集
type abiDesc struct {
// call and ret represent the translation steps for
// the call and return paths of a Go function.
// 这就是两个局部,调用传参,和返回值俩个步骤,都是 abiSeq
call, ret abiSeq
// These fields describe the stack space allocated
// for the call. stackCallArgsSize is the amount of space
// reserved for arguments but not return values. retOffset
// is the offset at which return values begin, and
// spill is the size in bytes of additional space reserved
// to spill argument registers into in case of preemption in
// reflectcall's stack frame.
// stackCallArgsSize 参数空间大小
// retOffset 返回值偏移地位
// spill 额定的空间,避免参数寄存器溢出
// 栈参数空间大小,返回值偏移地址,spill 是额定空间,和旧版的栈调配一样,为了避免寄存器放不下了,跟旧版寄存办法一样,好读取数据
stackCallArgsSize, retOffset, spill uintptr
// stackPtrs is a bitmap that indicates whether
// each word in the ABI stack space (stack-assigned
// args + return values) is a pointer. Used
// as the heap pointer bitmap for stack space
// passed to reflectcall.
// 一个位图,指 ABI 参数和返回值是否是一个指针,用作栈空间反射调用堆指针空间位图
// 与 runtime.bitvector. 统一
stackPtrs *bitVector
// inRegPtrs is a bitmap whose i'th bit indicates
// whether the i'th integer argument register contains
// a pointer. Used by makeFuncStub and methodValueCall
// to make result pointers visible to the GC.
//
// outRegPtrs is the same, but for result values.
// Used by reflectcall to make result pointers visible
// to the GC.
// inRegPtrs,入参 应用 makeFuncStub methodValueCall 使对 GC 可见
// outRegPtrs,返回 应用 reflectcall 使对 GC 可见
// 第 i 位是否蕴含指针
// 这俩个和 GC 无关,用来裸露给 GC
// 这个 IntArgRegBitmap 是 [(IntArgRegs + 7) / 8]uint8
inRegPtrs, outRegPtrs abi.IntArgRegBitmap
}
func (a *abiDesc) dump() {println("ABI")
println("call")
a.call.dump()
println("ret")
a.ret.dump()
println("stackCallArgsSize", a.stackCallArgsSize)
println("retOffset", a.retOffset)
println("spill", a.spill)
print("inRegPtrs:")
dumpPtrBitMap(a.inRegPtrs)
println()
print("outRegPtrs:")
dumpPtrBitMap(a.outRegPtrs)
println()}
func dumpPtrBitMap(b abi.IntArgRegBitmap) {
for i := 0; i < intArgRegs; i++ {
x := 0
if b.Get(i) {x = 1}
print(" ", x)
}
}
// 封装一个参数传递过程
func newAbiDesc(t *funcType, rcvr *rtype) abiDesc {
// We need to add space for this argument to
// the frame so that it can spill args into it.
//
// The size of this space is just the sum of the sizes
// of each register-allocated type.
//
// TODO(mknyszek): Remove this when we no longer have
// caller reserved spill space.
// 咱们须要调配一个空间,能够将参数溢出到这里
// 这个大小只是每个寄存器调配类型的大小总和
// 当咱们不再有调用者时删除他
spill := uintptr(0)
// Compute gc program & stack bitmap for stack arguments
// 计算堆栈参数 gc 程序和堆栈位图
stackPtrs := new(bitVector)
// Compute the stack frame pointer bitmap and register
// pointer bitmap for arguments.
// 计算参数的堆栈帧指针位图和寄存器指针位图。inRegPtrs := abi.IntArgRegBitmap{}
// Compute abiSeq for input parameters.
// 计算入参的 seq
var in abiSeq
if rcvr != nil {
// rcvr 作为第一个参数传递进去
stkStep, isPtr := in.addRcvr(rcvr)
if stkStep != nil {
if isPtr {stackPtrs.append(1)
} else {stackPtrs.append(0)
}
} else {spill += ptrSize}
}
for i, arg := range t.in() {stkStep := in.addArg(arg)
if stkStep != nil {addTypeBits(stackPtrs, stkStep.stkOff, arg)
} else {spill = align(spill, uintptr(arg.align))
spill += arg.size
for _, st := range in.stepsForValue(i) {
if st.kind == abiStepPointer {inRegPtrs.Set(st.ireg)
}
}
}
}
spill = align(spill, ptrSize)
// From the input parameters alone, we now know
// the stackCallArgsSize and retOffset.
stackCallArgsSize := in.stackBytes
retOffset := align(in.stackBytes, ptrSize)
// Compute the stack frame pointer bitmap and register
// pointer bitmap for return values.
outRegPtrs := abi.IntArgRegBitmap{}
// Compute abiSeq for output parameters.
var out abiSeq
// Stack-assigned return values do not share
// space with arguments like they do with registers,
// so we need to inject a stack offset here.
// Fake it by artificially extending stackBytes by
// the return offset.
out.stackBytes = retOffset
for i, res := range t.out() {stkStep := out.addArg(res)
if stkStep != nil {addTypeBits(stackPtrs, stkStep.stkOff, res)
} else {for _, st := range out.stepsForValue(i) {
if st.kind == abiStepPointer {outRegPtrs.Set(st.ireg)
}
}
}
}
// Undo the faking from earlier so that stackBytes
// is accurate.
out.stackBytes -= retOffset
return abiDesc{in, out, stackCallArgsSize, retOffset, spill, stackPtrs, inRegPtrs, outRegPtrs}
}
正文完