关于flink:4Flink-CEP-SQL贪婪词量演示

41次阅读

共计 3060 个字符,预计需要花费 8 分钟才能阅读完成。

基于上一篇(3)Flink CEP SQL 宽松近邻代码演示的延展,在上一篇中咱们应用贪心词量 +(至多匹配 1 行或多行),本篇将演示多种贪心词量的成果:
(1)应用贪心词量 *(匹配 0 行或多行)

public static void main(String[] args) {
    EnvironmentSettings settings = null;
    StreamTableEnvironment tEnv = null;
    try {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        settings = EnvironmentSettings.newInstance()
                .useBlinkPlanner()
                .inStreamingMode()
                .build();
        tEnv = StreamTableEnvironment.create(env, settings);
        System.out.println("===============CEP_SQL_10=================");
        final DateTimeFormatter dateTimeFormatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
        DataStream<Ticker> dataStream =
                env.fromElements(new Ticker(1, "ACME", 22, 1, LocalDateTime.parse("2021-12-10 10:00:00", dateTimeFormatter)),
                        new Ticker(3, "ACME", 19, 1, LocalDateTime.parse("2021-12-10 10:00:02", dateTimeFormatter)),
                        new Ticker(4, "ACME", 23, 3, LocalDateTime.parse("2021-12-10 10:00:03", dateTimeFormatter)),
                        new Ticker(5, "Apple", 25, 2, LocalDateTime.parse("2021-12-10 10:00:04", dateTimeFormatter)),
                        new Ticker(6, "Apple", 18, 1, LocalDateTime.parse("2021-12-10 10:00:05", dateTimeFormatter)),
                        new Ticker(7, "Apple", 16, 1, LocalDateTime.parse("2021-12-10 10:00:06", dateTimeFormatter)),
                        new Ticker(8, "Apple", 14, 2, LocalDateTime.parse("2021-12-10 10:00:07", dateTimeFormatter)),
                        new Ticker(9, "Apple", 19, 2, LocalDateTime.parse("2021-12-10 10:00:08", dateTimeFormatter)),
                        new Ticker(10, "Apple", 25, 2, LocalDateTime.parse("2021-12-10 10:00:09", dateTimeFormatter)),
                        new Ticker(11, "Apple", 11, 1, LocalDateTime.parse("2021-12-10 10:00:11", dateTimeFormatter)),
                        new Ticker(12, "Apple", 15, 1, LocalDateTime.parse("2021-12-10 10:00:12", dateTimeFormatter)),
                        new Ticker(13, "Apple", 19, 1, LocalDateTime.parse("2021-12-10 10:00:13", dateTimeFormatter)),
                        new Ticker(14, "Apple", 25, 1, LocalDateTime.parse("2021-12-10 10:00:14", dateTimeFormatter)),
                        new Ticker(15, "Apple", 19, 1, LocalDateTime.parse("2021-12-10 10:00:15", dateTimeFormatter)),
                        new Ticker(16, "Apple", 15, 1, LocalDateTime.parse("2021-12-10 10:00:16", dateTimeFormatter)),
                        new Ticker(17, "Apple", 19, 1, LocalDateTime.parse("2021-12-10 10:00:17", dateTimeFormatter)),
                        new Ticker(18, "Apple", 15, 1, LocalDateTime.parse("2021-12-10 10:00:18", dateTimeFormatter)));
        
        Table table = tEnv.fromDataStream(dataStream, Schema.newBuilder()
                .column("id", DataTypes.BIGINT())
                .column("symbol", DataTypes.STRING())
                .column("price", DataTypes.BIGINT())
                .column("tax", DataTypes.BIGINT())
                .column("rowtime", DataTypes.TIMESTAMP(3))
                .watermark("rowtime", "rowtime - INTERVAL'1'SECOND")
                .build());
        tEnv.createTemporaryView("CEP_SQL_10", table);
        
        String sql = "SELECT *" +
                "FROM CEP_SQL_10" +
                "MATCH_RECOGNIZE (" +
                "PARTITION BY symbol" +       // 按 symbol 分区,将雷同卡号的数据分到同一个计算节点上。"ORDER BY rowtime" +          // 在窗口内,对事件工夫进行排序。"MEASURES" +                   // 定义如何依据匹配胜利的输出事件结构输入事件
                "e1.id as id,"+
                "AVG(e1.price) as avgPrice,"+
                "e1.rowtime AS start_tstamp," +
                "e3.rowtime AS end_tstamp" +
                "ONE ROW PER MATCH" +                                      // 匹配胜利输入一条
                "AFTER MATCH  skip to next row" +                   // 匹配后跳转到下一行
                "PATTERN (e1 e2* e3) WITHIN INTERVAL'2'MINUTE" +
                "DEFINE" +                                                 // 定义各事件的匹配条件
                "e1 AS" +
                "e1.price = 25 ," +
                "e2 AS" +
                "e2.price > 10 AND e2.price <19," +
                "e3 AS" +
                "e3.price = 19" +
                ") MR";
        
        
        TableResult res = tEnv.executeSql(sql);
        res.print();
        tEnv.dropTemporaryView("CEP_SQL_10");
}

匹配到了三组数据

贪心词量 *(匹配 0 行或多行)

(2)应用贪心词量 {n}(严格匹配 n 行)

(3)应用贪心词量 {n,}(n 或者更多行 (n≥O))

正文完
 0