[toc]
一、Elasticsearch analizer 组成
1. 组成三大件
1.1 Character Filter(字符过滤器)
用于原始文本过滤,比方原文本为 html 的文本,须要去掉 html 标签:html_strip
1.2 Tokenizer(分词器)
按某种规定 (比方空格) 对输出(Character Filter 解决完的文本) 进行切分
1.3 Token Filter(分词过滤器)
对 Tokenizer 切分后的准 term 进行二次加工,比方大写 -> 小写,stop word 过滤(跑去 in、the 等)
二、Analyzer 测试分词
2.1 指定 analyzer 测试分词
2.1.1 standard analyzer
-
Tokenizer: Standard Tokenize
基于 unicode 文本宰割,适于大多数语言
-
Token Filter: Lower Case Token Filter/Stop Token Filter(默认禁用)
- LowerCase Token Filter: 过滤后,变小写 –> 所以 standard 默认分词后的搜寻匹配是小写
- Stop Token Filter(默认禁用) –> 停用词:分词后索引里会抛弃的
GET _analyze
{
"analyzer": "standard",
"text": "#!#For example, UUU you can see 27 accounts in ID (Idaho)."
}
2.1.2 standard 后果可见
- 全小写
- 数字还在
- 没有 stop word(默认敞开的)
{
"tokens" : [
{
"token" : "for",
"start_offset" : 3,
"end_offset" : 6,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "example",
"start_offset" : 7,
"end_offset" : 14,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "uuu",
"start_offset" : 16,
"end_offset" : 19,
"type" : "<ALPHANUM>",
"position" : 2
},
{
"token" : "you",
"start_offset" : 20,
"end_offset" : 23,
"type" : "<ALPHANUM>",
"position" : 3
},
{
"token" : "can",
"start_offset" : 24,
"end_offset" : 27,
"type" : "<ALPHANUM>",
"position" : 4
},
{
"token" : "see",
"start_offset" : 28,
"end_offset" : 31,
"type" : "<ALPHANUM>",
"position" : 5
},
{
"token" : "27",
"start_offset" : 32,
"end_offset" : 34,
"type" : "<NUM>",
"position" : 6
},
{
"token" : "accounts",
"start_offset" : 35,
"end_offset" : 43,
"type" : "<ALPHANUM>",
"position" : 7
},
{
"token" : "in",
"start_offset" : 44,
"end_offset" : 46,
"type" : "<ALPHANUM>",
"position" : 8
},
{
"token" : "id",
"start_offset" : 47,
"end_offset" : 49,
"type" : "<ALPHANUM>",
"position" : 9
},
{
"token" : "idaho",
"start_offset" : 51,
"end_offset" : 56,
"type" : "<ALPHANUM>",
"position" : 10
}
]
}
2.2 其余 analyzer
- standard
- stop stopword 剔除
- simple
- whitespace 只用空白符宰割,不剔除
- keyword 残缺文本,不分词
2.3 指定 Tokenizer 和 Token Filter 测试分词
2.3.1 应用 standard 雷同的 Tokenizer 和 Filter
后面一节说:standard analyzer 应用的 Tokenizer 是standard Tokenizer
应用的 filter 是lowercase
, 咱们通过应用 tokenizer 和 filter 来替换 analyzer 试试:
GET _analyze
{
"tokenizer": "standard",
"filter": ["lowercase"],
"text": "#!#For example, UUU you can see 27 accounts in ID (Idaho)."
}
后果和下面统一:
{
"tokens" : [
{
"token" : "for",
"start_offset" : 3,
"end_offset" : 6,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "example",
"start_offset" : 7,
"end_offset" : 14,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "uuu",
"start_offset" : 16,
"end_offset" : 19,
"type" : "<ALPHANUM>",
"position" : 2
},
{
"token" : "you",
"start_offset" : 20,
"end_offset" : 23,
"type" : "<ALPHANUM>",
"position" : 3
},
{
"token" : "can",
"start_offset" : 24,
"end_offset" : 27,
"type" : "<ALPHANUM>",
"position" : 4
},
{
"token" : "see",
"start_offset" : 28,
"end_offset" : 31,
"type" : "<ALPHANUM>",
"position" : 5
},
{
"token" : "27",
"start_offset" : 32,
"end_offset" : 34,
"type" : "<NUM>",
"position" : 6
},
{
"token" : "accounts",
"start_offset" : 35,
"end_offset" : 43,
"type" : "<ALPHANUM>",
"position" : 7
},
{
"token" : "in",
"start_offset" : 44,
"end_offset" : 46,
"type" : "<ALPHANUM>",
"position" : 8
},
{
"token" : "id",
"start_offset" : 47,
"end_offset" : 49,
"type" : "<ALPHANUM>",
"position" : 9
},
{
"token" : "idaho",
"start_offset" : 51,
"end_offset" : 56,
"type" : "<ALPHANUM>",
"position" : 10
}
]
}
2.3.2 减少一个 stop 的 filter 再试
GET _analyze
{
"tokenizer": "standard",
"filter": ["lowercase","stop"],
"text": "#!#For example, UUU you can see 27 accounts in ID (Idaho)."
}
察看发现:in
没了,所以 stop 里应该是有 in
这个过滤成分的呢~
filter 里有两个 (应用了两个 TokenFilter–ES 的字段都能够使多个多个值的就是数组式的) 如果去掉 filter 里的lowercase
, 就不会转大写为小写了,这里就不贴出后果了~
{
"tokens" : [
{
"token" : "example",
"start_offset" : 7,
"end_offset" : 14,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "uuu",
"start_offset" : 16,
"end_offset" : 19,
"type" : "<ALPHANUM>",
"position" : 2
},
{
"token" : "you",
"start_offset" : 20,
"end_offset" : 23,
"type" : "<ALPHANUM>",
"position" : 3
},
{
"token" : "can",
"start_offset" : 24,
"end_offset" : 27,
"type" : "<ALPHANUM>",
"position" : 4
},
{
"token" : "see",
"start_offset" : 28,
"end_offset" : 31,
"type" : "<ALPHANUM>",
"position" : 5
},
{
"token" : "27",
"start_offset" : 32,
"end_offset" : 34,
"type" : "<NUM>",
"position" : 6
},
{
"token" : "accounts",
"start_offset" : 35,
"end_offset" : 43,
"type" : "<ALPHANUM>",
"position" : 7
},
{
"token" : "id",
"start_offset" : 47,
"end_offset" : 49,
"type" : "<ALPHANUM>",
"position" : 9
},
{
"token" : "idaho",
"start_offset" : 51,
"end_offset" : 56,
"type" : "<ALPHANUM>",
"position" : 10
}
]
}
三、Elasticsearch 自带的 Analyzer 组件
3.1 ES 自带的 character filter
3.1.1 什么是 character filter?
在 tokenizer 之前,对文本进行解决,例如减少删除或替换字符;能够设置多个 character filter.
它会影响 tokenizer 的
position
和offset
.
3.1.2 一些自带的 character filter
- html strip: 剔除 html 标签
- mapping: 字符串替换
- pattern replace: 正则匹配替换
3.2 ES 自带的 tokenizer
3.2.1 什么是 tokenizer?
将原始文本 (character filter 解决后的原始文本) 依照肯定规定进行切分。(term or token)
3.2.2 自带的 tokenizer
- whitespace: 空格分词
- standard
- uax_url_email: url/email
- pattern
- keyword: 不分词
- pattern hierarchy: 路径名拆分
3.2.3 能够用 java 插件,实现自定义的 tokenizer
3.3 ES 自带的 token filter
3.3.1 什么是 tokenizer?
将 tokenizer 输入的单词进行加工(加工 term)
3.3.2 自带的 token filter
- lowercase: 小写化
- stop: 去除停用词(in/the 等)
- synonym: 增加近义词
四、Demo 案例
4.1 html_strip/maping+keyword
GET _analyze
{
"tokenizer": "keyword",
"char_filter": [
{"type": "html_strip"},
{
"type": "mapping",
"mappings": ["- => _", ":) => _happy_", ":(=> _sad_"]
}
],
"text": "<b>Hello :) this-is-my-book,that-is-not :(World</b>"}
应用了 tokenizer:keyword,也就是切词时残缺保留,不切割;
应用了 char_filter 两个:html_strip(剔除掉 html 标签),mapping(用指定内容替换原内容)
下面后果:html 标签去掉了,减号符替换成了下划线
{
"tokens" : [
{
"token" : "Hello _happy_ this_is_my_book,that_is_not _sad_ World",
"start_offset" : 3,
"end_offset" : 52,
"type" : "word",
"position" : 0
}
]
}
4.2 char_filter 应用正则替换
GET _analyze
{
"tokenizer": "standard",
"char_filter": [
{
"type": "pattern_replace",
"pattern": "http://(.*)",
"replacement": "$1"
}
],
"text": "http://www.elastic.co"
}
正则替换:type
/pattern
/replacement
后果:
{
"tokens" : [
{
"token" : "www.elastic.co",
"start_offset" : 0,
"end_offset" : 21,
"type" : "<ALPHANUM>",
"position" : 0
}
]
}
4.3 tokenizer 应用目录切分
GET _analyze
{
"tokenizer": "path_hierarchy",
"text": "/user/niewj/a/b/c"
}
分词后果:
{
"tokens" : [
{
"token" : "/user",
"start_offset" : 0,
"end_offset" : 5,
"type" : "word",
"position" : 0
},
{
"token" : "/user/niewj",
"start_offset" : 0,
"end_offset" : 11,
"type" : "word",
"position" : 0
},
{
"token" : "/user/niewj/a",
"start_offset" : 0,
"end_offset" : 13,
"type" : "word",
"position" : 0
},
{
"token" : "/user/niewj/a/b",
"start_offset" : 0,
"end_offset" : 15,
"type" : "word",
"position" : 0
},
{
"token" : "/user/niewj/a/b/c",
"start_offset" : 0,
"end_offset" : 17,
"type" : "word",
"position" : 0
}
]
}
4.4 tokenfilter 之 whitespace 与 stop
GET _analyze
{
"tokenizer": "whitespace",
"filter": ["stop"], // ["lowercase", "stop"]
"text": "The girls in China are playing this game !"
}
后果:in、this 都被剔除了(stopword), 然而 term 是大写的还保留,因为 tokenizer 用的是 whitespace 而非 standard
{
"tokens" : [
{
"token" : "The",
"start_offset" : 0,
"end_offset" : 3,
"type" : "word",
"position" : 0
},
{
"token" : "girls",
"start_offset" : 4,
"end_offset" : 9,
"type" : "word",
"position" : 1
},
{
"token" : "China",
"start_offset" : 13,
"end_offset" : 18,
"type" : "word",
"position" : 3
},
{
"token" : "playing",
"start_offset" : 23,
"end_offset" : 30,
"type" : "word",
"position" : 5
},
{
"token" : "game",
"start_offset" : 36,
"end_offset" : 40,
"type" : "word",
"position" : 7
},
{
"token" : "!",
"start_offset" : 41,
"end_offset" : 42,
"type" : "word",
"position" : 8
}
]
}
4.5 自定义 analyzer
4.5.1 settings 自定义 analyzer
PUT my_new_index
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer":{ // 1. 自定义 analyzer 的名称
"type": "custom",
"char_filter": ["my_emoticons"],
"tokenizer": "my_punctuation",
"filter": ["lowercase", "my_english_stop"]
}
},
"tokenizer": {
"my_punctuation": { // 3. 自定义 tokenizer 的名称
"type": "pattern", "pattern":"[.,!?]"
}
},
"char_filter": {
"my_emoticons": { // 2. 自定义 char_filter 的名称
"type": "mapping", "mappings":[":) => _hapy_", ":(=> _sad_"]
}
},
"filter": {
"my_english_stop": { // 4. 自定义 token filter 的名称
"type": "stop", "stopwords": "_english_"
}
}
}
}
}
4.5.2 测试自定义的 analyzer:
POST my_new_index/_analyze
{
"analyzer": "my_analyzer",
"text": "I'm a :) person in the earth, :(And You? "}
输入
{
"tokens" : [
{"token" : "i'm","start_offset": 0,"end_offset": 3,"type":"word","position" : 0},
{
"token" : "_hapy_",
"start_offset" : 6,
"end_offset" : 8,
"type" : "word",
"position" : 2
},
{
"token" : "person",
"start_offset" : 9,
"end_offset" : 15,
"type" : "word",
"position" : 3
},
{
"token" : "earth",
"start_offset" : 23,
"end_offset" : 28,
"type" : "word",
"position" : 6
},
{
"token" : "_sad_",
"start_offset" : 30,
"end_offset" : 32,
"type" : "word",
"position" : 7
},
{
"token" : "you",
"start_offset" : 37,
"end_offset" : 40,
"type" : "word",
"position" : 9
}
]
}