关于多线程:多线程4线程池

38次阅读

共计 15446 个字符,预计需要花费 39 分钟才能阅读完成。

对于线程池

线程池就是首先创立一些线程,它们的汇合称为线程池。应用线程池能够很好地进步性能,线程池在系统启动时即创立大量闲暇的线程,程序将一个工作传给线程池,线程池就会启动一条线程来执行这个工作,执行完结当前,该线程并不会死亡,而是再次返回线程池中成为闲暇状态,期待执行下一个工作

为什么要应用线程池

多线程运行工夫,零碎一直的启动和敞开新线程,老本十分高,会过渡耗费系统资源,以及过渡切换线程的危险,从而可能导致系统资源的解体。这时,线程池就是最好的抉择了

ThreadPoolExecutor 类

Java 外面线程池的顶级接口是 Executor,然而严格意义上讲 Executor 并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是 ExecutorService

ExecutorService 真正的线程池接口。
ScheduledExecutorService 能和 Timer/TimerTask 相似,解决那些须要工作反复执行的问题。
ThreadPoolExecutor ExecutorService 的默认实现。
ScheduledThreadPoolExecutor 继承 ThreadPoolExecutor 的 ScheduledExecutorService 接口实现,周期性任务调度的类实现。

ThreadPoolExecutor

咱们来看一下 ThreadPoolExecutor 的具体实现:

在 ThreadPoolExecutor 中有四个构造方法

public class ThreadPoolExecutor extends AbstractExecutorService {
    
    /**
     * Core pool size is the minimum number of workers to keep alive    外围线程数量是维持线程池存活的最小数量,而且不容许超时,除非设置 allowCoreThreadTimeOut,在这种状况下最小值为 0
     * (and not allow to time out etc) unless allowCoreThreadTimeOut
     * is set, in which case the minimum is zero.
     */
    private volatile int corePoolSize;
    
    /**
     * Maximum pool size. Note that the actual maximum is internally    最大线程数量,留神,理论最大数量受容量限度
     * bounded by CAPACITY.
     */
    private volatile int maximumPoolSize;
    
    /**
     * The queue used for holding tasks and handing off to worker        用于保留工作和移交给工作线程    
     * threads.  We do not require that workQueue.poll() returning        
     * null necessarily means that workQueue.isEmpty(), so rely
     * solely on isEmpty to see if the queue is empty (which we must
     * do for example when deciding whether to transition from
     * SHUTDOWN to TIDYING).  This accommodates special-purpose
     * queues such as DelayQueues for which poll() is allowed to
     * return null even if it may later return non-null when delays
     * expire.
     */
    private final BlockingQueue<Runnable> workQueue;
    
    /**
     * Timeout in nanoseconds for idle threads waiting for work.        闲暇线程的期待超时工夫,当线程数量超过 corePoolSize 或者 allowCoreThreadTimeOut 时应用,否则永远期待新的工作
     * Threads use this timeout when there are more than corePoolSize
     * present or if allowCoreThreadTimeOut. Otherwise they wait
     * forever for new work.
     */
    private volatile long keepAliveTime;
    
    /**
     * Factory for new threads. All threads are created using this        创立线程的工厂
     * factory (via method addWorker).  All callers must be prepared
     * for addWorker to fail, which may reflect a system or user's
     * policy limiting the number of threads.  Even though it is not
     * treated as an error, failure to create threads may result in
     * new tasks being rejected or existing ones remaining stuck in
     * the queue.
     *
     * We go further and preserve pool invariants even in the face of
     * errors such as OutOfMemoryError, that might be thrown while
     * trying to create threads.  Such errors are rather common due to
     * the need to allocate a native stack in Thread.start, and users
     * will want to perform clean pool shutdown to clean up.  There
     * will likely be enough memory available for the cleanup code to
     * complete without encountering yet another OutOfMemoryError.
     */
    private volatile ThreadFactory threadFactory;
    
    /**
     * Handler called when saturated or shutdown in execute.        回绝策略,线程饱和或敞开时调用的处理程序
     */
    private volatile RejectedExecutionHandler handler;

    
    
    // 应用指定参数创立线程池,应用默认线程工厂和回绝策略
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), defaultHandler);
    }
    // 应用指定参数创立线程池,应用默认回绝策略
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             threadFactory, defaultHandler);
    }
    // 应用指定参数创立线程池,应用默认线程工厂
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              RejectedExecutionHandler handler) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), handler);
    }
    
    // 应用指定参数创立线程池
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }
}
  • corePoolSize:外围池的大小,这个参数跟前面讲述的线程池的实现原理有十分大的关系。在创立了线程池后,默认状况下,线程池中并没有任何线程,而是期待有工作到来才创立线程去执行工作,除非调用了 prestartAllCoreThreads() 或者 prestartCoreThread() 办法,从这 2 个办法的名字就能够看出,是预创立线程的意思,即在没有工作到来之前就创立 corePoolSize 个线程或者一个线程。默认状况下,在创立了线程池后,线程池中的线程数为 0,当有工作来之后,就会创立一个线程去执行工作,当线程池中的线程数目达到 corePoolSize 后,就会把达到的工作放到缓存队列当中;
  • maximumPoolSize:线程池最大线程数,这个参数也是一个十分重要的参数,它示意在线程池中最多能创立多少个线程;
  • keepAliveTime:示意线程没有工作执行时最多放弃多久工夫会终止。默认状况下,只有当线程池中的线程数大于 corePoolSize 时,keepAliveTime 才会起作用,直到线程池中的线程数不大于 corePoolSize,即当线程池中的线程数大于 corePoolSize 时,如果一个线程闲暇的工夫达到 keepAliveTime,则会终止,直到线程池中的线程数不超过 corePoolSize。然而如果调用了 allowCoreThreadTimeOut(boolean) 办法,在线程池中的线程数不大于 corePoolSize 时,keepAliveTime 参数也会起作用,直到线程池中的线程数为 0;
  • unit:参数 keepAliveTime 的工夫单位
  • workQueue:一个阻塞队列,用来存储期待执行的工作,这个参数的抉择也很重要,会对线程池的运行过程产生重大影响,一般来说,这里的阻塞队列有以下几种抉择

    ArrayBlockingQueue;
    LinkedBlockingQueue;
    SynchronousQueue;
  • threadFactory:线程工厂,次要用来创立线程;
  • handler:示意当回绝解决工作时的策略,有以下四种取值:

      ThreadPoolExecutor.AbortPolicy: 抛弃工作并抛出 RejectedExecutionException 异样。ThreadPoolExecutor.DiscardPolicy:也是抛弃工作,然而不抛出异样。ThreadPoolExecutor.DiscardOldestPolicy:抛弃队列最后面的工作,而后从新尝试执行工作(反复此过程)ThreadPoolExecutor.CallerRunsPolicy:由调用线程解决该工作 

ExecutorService

ThreadPoolExecutor 继承自 AbstractExecutorService,AbstractExecutorService 而实现了 ExecutorService,ExecutorService 实现了 Executor

public interface Executor {

    /**
     * Executes the given command at some time in the future.  The command
     * may execute in a new thread, in a pooled thread, or in the calling
     * thread, at the discretion of the {@code Executor} implementation.
     *
     * @param command the runnable task
     * @throws RejectedExecutionException if this task cannot be
     * accepted for execution
     * @throws NullPointerException if command is null
     */
    void execute(Runnable command);
}

Executor 是顶层接口,外面定义了 execute(Runnable) 办法,返回类型为 void,用来执行传入的工作

ExecutorService 实现了 Executor 并申明了一些办法:submit、invokeAll、invokeAny 以及 shutDown 等

AbstractExecutorService 实现了 ExecutorService 并对其中定义的办法做了实现

ThreadPoolExecutor 继承自 AbstractExecutorService

线程池的实现

线程状态

    // runState is stored in the high-order bits
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

​ 当创立线程池后,初始时,线程池处于 RUNNING 状态;

如果调用了 shutdown() 办法,则线程池处于 SHUTDOWN 状态,此时线程池不可能承受新的工作,它会期待所有工作执行结束;

如果调用了 shutdownNow() 办法,则线程池处于 STOP 状态,此时线程池不能承受新的工作,并且会去尝试终止正在执行的工作;

当线程池处于 SHUTDOWN 或 STOP 状态,并且所有工作线程曾经销毁,工作缓存队列曾经清空或执行完结后,线程池被设置为 TERMINATED 状态。

private final BlockingQueue<Runnable> workQueue;              // 工作缓存队列,用来寄存期待执行的工作
private final ReentrantLock mainLock = new ReentrantLock();   // 线程池的次要状态锁,对线程池状态(比方线程池大小
                                                              //、runState 等)的扭转都要应用这个锁
private final HashSet<Worker> workers = new HashSet<Worker>();  // 用来寄存工作集
 
private volatile long  keepAliveTime;    // 线程存货工夫   
private volatile boolean allowCoreThreadTimeOut;   // 是否容许为外围线程设置存活工夫
private volatile int   corePoolSize;     // 外围池的大小(即线程池中的线程数目大于这个参数时,提交的工作会被放进工作缓存队列)private volatile int   maximumPoolSize;   // 线程池最大能容忍的线程数
 
private volatile int   poolSize;       // 线程池中以后的线程数
 
private volatile RejectedExecutionHandler handler; // 工作回绝策略
 
private volatile ThreadFactory threadFactory;   // 线程工厂,用来创立线程
 
private int largestPoolSize;   // 用来记录线程池中已经呈现过的最大线程数
 
private long completedTaskCount;   // 用来记录曾经执行结束的工作个数 

举个例子:一个房间能够装 15 集体,目前有 10 集体,每个人同时只能做一件事件,那么只有 10 集体中有闲暇的就能够承受新的工作,如果没有闲暇的那新的工作就要排队期待,如果新增的工作越来越多,那就要思考减少人数到 15 个,如果还是不够就要思考是否要回绝新的工作或者放弃之前的工作了,当 15 集体有闲暇的,那就又须要思考缩小人数,因为要发工资的

那么在这个例子中 10 集体就是 corePoolSize,15 就是 maximumPoolSize,workQueue 是没有闲暇人时的期待队列,回绝或者放弃之前工作就是 handler,人的闲暇工夫就是 keepAliveTime,如果人数超过 corePoolSize 或者设置了 allowCoreThreadTimeOut,那么工夫超过 keepAliveTime 后就要缩小人数

execute

ThreadPoolExecutor 中最外围的办法就是 execute

    public void execute(Runnable command) {if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to        如果正在运行的线程少于 corePoolSize 线程,尝试应用给定命令作为其第一个工作来启动新线程。对 addWorker 的调用从原子性上查看 runState 和 workerCount,* start a new thread with the given command as its first            通过返回 false 来避免在不应该增加线程的状况下收回虚伪警报。* task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need    如果工作能够胜利排队,那么咱们依然须要仔细检查是否应该增加线程(因为现有线程自上次查看后就死掉了)或自从进入此办法以来该池已敞开。因而,咱们从新查看状态,* to double-check whether we should have added a thread        并在必要时回滚队列(如果已进行),或者在没有线程的状况下启动新线程。* (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new        如果咱们无奈将工作排队,则尝试增加一个新线程。如果失败,咱们晓得咱们已敞开或已饱和,因而回绝该工作。* thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();//ctl 是一个 AtomicInteger 参数,用于判断线程状态
        // 判断工作线程数量是否小于外围线程数量,如果小于就减少工作线程数量
        if (workerCountOf(c) < corePoolSize) {if (addWorker(command, true))
                return;
            c = ctl.get();}
        // 如果工作能够胜利排队
        // 如果线程正在运行,就尝试将工作增加进缓存队列中
        // 此时获取到的是一个闲暇的线程,线程运行中并且工作增加缓存队列胜利
        if (isRunning(c) && workQueue.offer(command)) {
            // 此时获取到的是一个闲暇的线程,须要再次获取线程状态
            int recheck = ctl.get();
            // 判断闲暇线程状态,如果线程不是 running 状态且工作曾经 remove 就执行回绝策略
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        // 如果无奈从新排队
        // 增加失败
        else if (!addWorker(command, false))
            // 执行回绝策略
            reject(command);
    }

    
    
    // 增加工作    firstTask 工作    core    是否退出外围线程
    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        // 自旋期待
        for (;;) {int c = ctl.get();
            // 获取线执行状态
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                // 锁定
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {mainLock.unlock();
                }
                if (workerAdded) {t.start();
                    workerStarted = true;
                }
            }
        } finally {if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

Worker

private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
        /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
        private static final long serialVersionUID = 6138294804551838833L;

        /** Thread this worker is running in.  Null if factory fails. */
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        Runnable firstTask;
        /** Per-thread task counter */
        volatile long completedTasks;

        /**
         * Creates with given first task and thread from ThreadFactory.
         * @param firstTask the first task (null if none)
         */
        Worker(Runnable firstTask) {setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }

        /** Delegates main run loop to outer runWorker  */
        public void run() {runWorker(this);
        }

        // Lock methods
        //
        // The value 0 represents the unlocked state.
        // The value 1 represents the locked state.

        protected boolean isHeldExclusively() {return getState() != 0;
        }

        protected boolean tryAcquire(int unused) {if (compareAndSetState(0, 1)) {setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }

        protected boolean tryRelease(int unused) {setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }

        public void lock()        { acquire(1); }
        public boolean tryLock()  { return tryAcquire(1); }
        public void unlock()      { release(1); }
        public boolean isLocked() { return isHeldExclusively(); }

        void interruptIfStarted() {
            Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {t.interrupt();
                } catch (SecurityException ignore) {}}
        }
    }
  • 如果以后线程池中的线程数目小于 corePoolSize,则每来一个工作,就会创立一个线程去执行这个工作;
  • 如果以后线程池中的线程数目 >=corePoolSize,则每来一个工作,会尝试将其增加到工作缓存队列当中,若增加胜利,则该工作会期待闲暇线程将其取出去执行;若增加失败(一般来说是工作缓存队列已满),则会尝试创立新的线程去执行这个工作;
  • 如果以后线程池中的线程数目达到 maximumPoolSize,则会采取工作回绝策略进行解决;
  • 如果线程池中的线程数量大于 corePoolSize 时,如果某线程闲暇工夫超过 keepAliveTime,线程将被终止,直至线程池中的线程数目不大于 corePoolSize;如果容许为外围池中的线程设置存活工夫,那么外围池中的线程闲暇工夫超过 keepAliveTime,线程也会被终止。

罕用的线程池

newSingleThreadExecutor

单个线程的线程池,即线程池中每次只有一个线程工作,单线程串行执行工作

外围池大小 1,最大大小 1,存活工夫 0,即永不过期, 应用 LinkedBlockingQueue

public class SingleThreadExecutorTest {public static void main(String[] args) {
        // TODO Auto-generated method stub
        // 创立一个可重用固定线程数的线程池
        ExecutorService pool = Executors.newSingleThreadExecutor();

        // 创立实现了 Runnable 接口对象,Thread 对象当然也实现了 Runnable 接口;


        Thread t1 = new MyThread();

        Thread t2 = new MyThread();

        Thread t3 = new MyThread();

        Thread t4 = new MyThread();

        Thread t5 = new MyThread();

        // 将线程放到池中执行;pool.execute(t1);

        pool.execute(t2);

        pool.execute(t3);

        pool.execute(t4);

        pool.execute(t5);

        // 敞开线程池

        pool.shutdown();}
}

newFixedThreadExecutor

固定数量的线程池,没提交一个工作就是一个线程,直到达到线程池的最大数量,而后前面进入期待队列直到后面的工作实现才继续执行

外围池大小 nThreads,最大大小 nThreads,存活工夫 0,永不过期, 应用 LinkedBlockingQueue

public class FixedThreadExecutorTest {public static void main(String[] args) {
        // TODO Auto-generated method stub

        // 创立一个可重用固定线程数的线程池  外围池大小为 nThreads,keepAliveTime 为 0,线程永不过期
        ExecutorService pool = Executors.newFixedThreadPool(2);


        // 创立实现了 Runnable 接口对象,Thread 对象当然也实现了 Runnable 接口;
        Thread t1 = new MyThread();

        Thread t2 = new MyThread();

        Thread t3 = new MyThread();

        Thread t4 = new MyThread();

        Thread t5 = new MyThread();


        // 将线程放到池中执行;pool.execute(t1);

        pool.execute(t2);

        pool.execute(t3);

        pool.execute(t4);

        pool.execute(t5);

        // 敞开线程池

        pool.shutdown();}
}

newCacheThreadExecutor

可缓存线程池,当线程池大小超过了解决工作所需的线程,那么就会回收局部闲暇(个别是 60 秒无执行)的线程,当有工作来时,又智能的增加新线程来执行。

外围池大小 0,最大大小 Integer.MAX_VALUE,存活工夫默认 60s, 应用 SynchronousQueue

public class CachedThreadExecutorTest {public static void main(String[] args) {
        // TODO Auto-generated method stub

        // 创立一个可重用固定线程数的线程池  外围池大小为 0,keepAliveTime 为 60L,默认 60s 过期
        ExecutorService pool = Executors.newCachedThreadPool();

        // 创立实现了 Runnable 接口对象,Thread 对象当然也实现了 Runnable 接口;
        Thread t1 = new MyThread();
        Thread t2 = new MyThread();
        Thread t3 = new MyThread();
        Thread t4 = new MyThread();
        Thread t5 = new MyThread();

        // 将线程放到池中执行;pool.execute(t1);
        pool.execute(t2);
        pool.execute(t3);
        pool.execute(t4);
        pool.execute(t5);
        // 敞开线程池
        pool.shutdown();}
}

newScheduleThreadExecutor

大小无限度的线程池,反对定时和周期性的执行线程

外围池大小 corePoolSize,最大大小 Integer.MAX_VALUE,存活工夫 0,永不过期,应用 DelayedWorkQueue

public class NewScheduledThreadPool {public static void main(String[] args) {
        // TODO Auto-generated method stub
        ScheduledThreadPoolExecutor exec = new ScheduledThreadPoolExecutor(1);
        exec.scheduleAtFixedRate(new Runnable() {// 每隔一段时间就触发异样

            @Override
            public void run() {
                // TODO Auto-generated method stub
                //throw new RuntimeException();
                System.out.println("===================");

            }
        }, 1000, 5000, TimeUnit.MILLISECONDS);

        exec.scheduleAtFixedRate(new Runnable() {// 每隔一段时间打印零碎工夫,证实两者是互不影响的

            @Override
            public void run() {
                // TODO Auto-generated method stub
                System.out.println(System.nanoTime());

            }
        }, 1000, 2000, TimeUnit.MILLISECONDS);
    }
}

MyThread

public class MyThread extends Thread {

    @Override
    public void run() {
        // TODO Auto-generated method stub
        // super.run();
        System.out.println(Thread.currentThread().getName() + "正在执行....");
    }
}

缓存队列

在后面咱们屡次提到了工作缓存队列,即 workQueue,它用来寄存期待执行的工作。

workQueue 的类型为 BlockingQueue<Runnable>,通常能够取上面三种类型:

1)ArrayBlockingQueue:基于数组实现的有界阻塞队列,依照先进先出对数组进行排序,此队列创立时必须指定大小;

2)LinkedBlockingQueue:基于链表的先进先出阻塞队列,依照先进先出对数组进行排序,如果创立时没有指定此队列大小,则默认为 Integer.MAX_VALUE;

3)synchronousQueue:这个队列比拟非凡,它不会保留提交的工作,而是将间接新建一个线程来执行新来的工作,不存储元素。

4)DelayedWorkQueue:实现 PriorityBlockingQueue 实现提早获取的无界队列,创立元素时,能够指定多久能力从队列中获取以后元素,只有延时期满能力从队列中获取元素。

工作回绝策略

当线程池的工作缓存队列已满并且线程池中的线程数目达到 maximumPoolSize,如果还有工作到来就会采取工作回绝策略,通常有以下四种策略:

ThreadPoolExecutor.AbortPolicy: 抛弃工作并抛出 RejectedExecutionException 异样。ThreadPoolExecutor.DiscardPolicy:也是抛弃工作,然而不抛出异样。ThreadPoolExecutor.DiscardOldestPolicy:抛弃队列最后面的工作,而后从新尝试执行工作(反复此过程)ThreadPoolExecutor.CallerRunsPolicy:由调用线程解决该工作 

正文完
 0