关于大数据:赵强老师Flink的DataSet算子

36次阅读

共计 6954 个字符,预计需要花费 18 分钟才能阅读完成。

Flink 为了可能解决有边界的数据集和无边界的数据集,提供了对应的 DataSet API 和 DataStream API。咱们能够开发对应的 Java 程序或者 Scala 程序来实现相应的性能。上面举例了一些 DataSet API 中的根本的算子。

上面咱们通过具体的代码来为大家演示每个算子的作用。

1、Map、FlatMap 与 MapPartition

// 获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

ArrayList<String> data = new ArrayList<String>();
data.add("I love Beijing");
data.add("I love China");
data.add("Beijing is the capital of China");
DataSource<String> text = env.fromCollection(data);

DataSet<List<String>> mapData = text.map(new MapFunction<String, List<String>>() {public List<String> map(String data) throws Exception {String[] words = data.split(" ");
        
        // 创立一个 List
        List<String> result = new ArrayList<String>();
        for(String w:words){result.add(w);
        }
        return result;
    }
});
mapData.print();
System.out.println("*****************************************");

DataSet<String> flatMapData = text.flatMap(new FlatMapFunction<String, String>() {public void flatMap(String data, Collector<String> collection) throws Exception {String[] words = data.split(" ");
        for(String w:words){collection.collect(w);
        }
    }
});
flatMapData.print();

System.out.println("*****************************************");
/*    new MapPartitionFunction<String, String>
    第一个 String:示意分区中的数据元素类型
    第二个 String:示意解决后的数据元素类型 */
DataSet<String> mapPartitionData = text.mapPartition(new MapPartitionFunction<String, String>() {public void mapPartition(Iterable<String> values, Collector<String> out) throws Exception {
        // 针对分区进行操作的益处是:比方要进行数据库的操作,一个分区只须要创立一个 Connection
        //values 中保留了一个分区的数据
         Iterator<String> it = values.iterator();
        while (it.hasNext()) {String next = it.next();
            String[] split = next.split(" ");
            for (String word : split) {out.collect(word);
            }
        }
        // 敞开链接
    }
});
mapPartitionData.print();

2、Filter 与 Distinct

// 获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

ArrayList<String> data = new ArrayList<String>();
data.add("I love Beijing");
data.add("I love China");
data.add("Beijing is the capital of China");
DataSource<String> text = env.fromCollection(data);

DataSet<String> flatMapData = text.flatMap(new FlatMapFunction<String, String>() {public void flatMap(String data, Collector<String> collection) throws Exception {String[] words = data.split(" ");
        for(String w:words){collection.collect(w);
        }
    }
});

// 去掉反复的单词
flatMapData.distinct().print();
System.out.println("*********************");

// 选出长度大于 3 的单词
flatMapData.filter(new FilterFunction<String>() {public boolean filter(String word) throws Exception {int length = word.length();
        return length>3?true:false;
    }
}).print();

3、Join 操作

// 获取运行的环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

// 创立第一张表:用户 ID  姓名
ArrayList<Tuple2<Integer, String>> data1 = new ArrayList<Tuple2<Integer,String>>();
data1.add(new Tuple2(1,"Tom"));
data1.add(new Tuple2(2,"Mike"));
data1.add(new Tuple2(3,"Mary"));
data1.add(new Tuple2(4,"Jone"));
// 创立第二张表:用户 ID 所在的城市
ArrayList<Tuple2<Integer, String>> data2 = new ArrayList<Tuple2<Integer,String>>();
data2.add(new Tuple2(1,"北京"));
data2.add(new Tuple2(2,"上海"));
data2.add(new Tuple2(3,"广州"));
data2.add(new Tuple2(4,"重庆"));

// 实现 join 的多表查问:用户 ID  姓名  所在的程序
DataSet<Tuple2<Integer, String>> table1 = env.fromCollection(data1);
DataSet<Tuple2<Integer, String>> table2 = env.fromCollection(data2);

table1.join(table2).where(0).equalTo(0)
/* 第一个 Tuple2<Integer,String>:示意第一张表
 * 第二个 Tuple2<Integer,String>:示意第二张表
 * Tuple3<Integer,String, String>:多表 join 连贯查问后的返回后果   */                           
.with(new JoinFunction<Tuple2<Integer,String>, Tuple2<Integer,String>, Tuple3<Integer,String, String>>() {
    public Tuple3<Integer, String, String> join(Tuple2<Integer, String> table1,
            Tuple2<Integer, String> table2) throws Exception {return new Tuple3<Integer, String, String>(table1.f0,table1.f1,table2.f1);
    } }).print();

4、笛卡尔积

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

// 创立第一张表:用户 ID  姓名
ArrayList<Tuple2<Integer, String>> data1 = new ArrayList<Tuple2<Integer,String>>();
data1.add(new Tuple2(1,"Tom"));
data1.add(new Tuple2(2,"Mike"));
data1.add(new Tuple2(3,"Mary"));
data1.add(new Tuple2(4,"Jone"));

// 创立第二张表:用户 ID 所在的城市
ArrayList<Tuple2<Integer, String>> data2 = new ArrayList<Tuple2<Integer,String>>();
data2.add(new Tuple2(1,"北京"));
data2.add(new Tuple2(2,"上海"));
data2.add(new Tuple2(3,"广州"));
data2.add(new Tuple2(4,"重庆"));

// 实现 join 的多表查问:用户 ID  姓名  所在的程序
DataSet<Tuple2<Integer, String>> table1 = env.fromCollection(data1);
DataSet<Tuple2<Integer, String>> table2 = env.fromCollection(data2);

// 生成笛卡尔积
table1.cross(table2).print();

5、First-N

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

// 这里的数据是:员工姓名、薪水、部门号
DataSet<Tuple3<String, Integer,Integer>> grade = 
        env.fromElements(new Tuple3<String, Integer,Integer>("Tom",1000,10),
                         new Tuple3<String, Integer,Integer>("Mary",1500,20),
                         new Tuple3<String, Integer,Integer>("Mike",1200,30),
                         new Tuple3<String, Integer,Integer>("Jerry",2000,10));

// 依照插入程序取前三条记录
grade.first(3).print();
System.out.println("**********************");

// 先依照部门号排序,在依照薪水排序
grade.sortPartition(2, Order.ASCENDING).sortPartition(1, Order.ASCENDING).print();
System.out.println("**********************");

// 依照部门号分组,求每组的第一条记录
grade.groupBy(2).first(1).print();

6、外链接操作

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

// 创立第一张表:用户 ID  姓名
ArrayList<Tuple2<Integer, String>> data1 = new ArrayList<Tuple2<Integer,String>>();
data1.add(new Tuple2(1,"Tom"));
data1.add(new Tuple2(3,"Mary"));
data1.add(new Tuple2(4,"Jone"));

// 创立第二张表:用户 ID 所在的城市
ArrayList<Tuple2<Integer, String>> data2 = new ArrayList<Tuple2<Integer,String>>();
data2.add(new Tuple2(1,"北京"));
data2.add(new Tuple2(2,"上海"));
data2.add(new Tuple2(4,"重庆"));

// 实现 join 的多表查问:用户 ID  姓名  所在的程序
DataSet<Tuple2<Integer, String>> table1 = env.fromCollection(data1);
DataSet<Tuple2<Integer, String>> table2 = env.fromCollection(data2);

// 左外连贯
table1.leftOuterJoin(table2).where(0).equalTo(0)
      .with(new JoinFunction<Tuple2<Integer,String>, Tuple2<Integer,String>, Tuple3<Integer,String,String>>() {

        public Tuple3<Integer, String, String> join(Tuple2<Integer, String> table1,
                Tuple2<Integer, String> table2) throws Exception {
            // 左外连贯示意等号右边的信息会被蕴含
            if(table2 == null){return new Tuple3<Integer, String, String>(table1.f0,table1.f1,null);
            }else{return new Tuple3<Integer, String, String>(table1.f0,table1.f1,table2.f1);
            }
        }
    }).print();

System.out.println("***********************************");
// 右外连贯
table1.rightOuterJoin(table2).where(0).equalTo(0)
      .with(new JoinFunction<Tuple2<Integer,String>, Tuple2<Integer,String>, Tuple3<Integer,String,String>>() {

        public Tuple3<Integer, String, String> join(Tuple2<Integer, String> table1,
                Tuple2<Integer, String> table2) throws Exception {
            // 右外链接示意等号左边的表的信息会被蕴含
            if(table1 == null){return new Tuple3<Integer, String, String>(table2.f0,null,table2.f1);
            }else{return new Tuple3<Integer, String, String>(table2.f0,table1.f1,table2.f1);
            }
        }
    }).print();

System.out.println("***********************************");

// 全外连贯
table1.fullOuterJoin(table2).where(0).equalTo(0)
.with(new JoinFunction<Tuple2<Integer,String>, Tuple2<Integer,String>, Tuple3<Integer,String,String>>() {public Tuple3<Integer, String, String> join(Tuple2<Integer, String> table1, Tuple2<Integer, String> table2)
            throws Exception {if(table1 == null){return new Tuple3<Integer, String, String>(table2.f0,null,table2.f1);
        }else if(table2 == null){return new Tuple3<Integer, String, String>(table1.f0,table1.f1,null);
        }else{return new Tuple3<Integer, String, String>(table1.f0,table1.f1,table2.f1);
        }
    }
    
}).print();

正文完
 0