共计 3060 个字符,预计需要花费 8 分钟才能阅读完成。
后面一篇讲到 streamin 读取 kafka 数据加工解决后写到 kafka 数据,大数据开发 -Spark- 开发 Streaming 解决数据 && 写入 Kafka 是针对比方举荐畛域,实时标签等场景对于实时处理后果放到 mysql 也是一种罕用形式,假如一些车辆调度的地理位置信息处理后写入到 mysql
1. 阐明
数据表如下:
create database test;
use test;
DROP TABLE IF EXISTS car_gps;
CREATE TABLE IF NOT EXISTS car_gps(deployNum VARCHAR(30) COMMENT '调度编号',
plateNum VARCHAR(10) COMMENT '车牌号',
timeStr VARCHAR(20) COMMENT '工夫戳',
lng VARCHAR(20) COMMENT '经度',
lat VARCHAR(20) COMMENT '纬度',
dbtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP COMMENT '数据入库工夫',
PRIMARY KEY(deployNum, plateNum, timeStr))
2. 编写程序
首先引入 mysql 的驱动
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.44</version>
</dependency>
2.1 jdbc 写入 mysql
package com.hoult.Streaming.work
import java.sql.{Connection, DriverManager, PreparedStatement}
import java.util.Properties
import com.hoult.structed.bean.BusInfo
import org.apache.spark.sql.ForeachWriter
class JdbcHelper extends ForeachWriter[BusInfo] {
var conn: Connection = _
var statement: PreparedStatement = _
override def open(partitionId: Long, epochId: Long): Boolean = {if (conn == null) {conn = JdbcHelper.openConnection}
true
}
override def process(value: BusInfo): Unit = {
// 把数据写入 mysql 表中
val arr: Array[String] = value.lglat.split("_")
val sql = "insert into car_gps(deployNum,plateNum,timeStr,lng,lat) values(?,?,?,?,?)"
statement = conn.prepareStatement(sql)
statement.setString(1, value.deployNum)
statement.setString(2, value.plateNum)
statement.setString(3, value.timeStr)
statement.setString(4, arr(0))
statement.setString(5, arr(1))
statement.executeUpdate()}
override def close(errorOrNull: Throwable): Unit = {if (null != conn) conn.close()
if (null != statement) statement.close()}
}
object JdbcHelper {
var conn: Connection = _
val url = "jdbc:mysql://hadoop1:3306/test?useUnicode=true&characterEncoding=utf8"
val username = "root"
val password = "123456"
def openConnection: Connection = {if (null == conn || conn.isClosed) {
val p = new Properties
Class.forName("com.mysql.jdbc.Driver")
conn = DriverManager.getConnection(url, username, password)
}
conn
}
}
2.2 通过 foreach 来写入 mysql
package com.hoult.Streaming.work
import com.hoult.structed.bean.BusInfo
import org.apache.spark.sql.{Column, DataFrame, Dataset, SparkSession}
object KafkaToJdbc {def main(args: Array[String]): Unit = {System.setProperty("HADOOP_USER_NAME", "root")
//1 获取 sparksession
val spark: SparkSession = SparkSession.builder()
.master("local[*]")
.appName(KafkaToJdbc.getClass.getName)
.getOrCreate()
spark.sparkContext.setLogLevel("WARN")
import spark.implicits._
//2 定义读取 kafka 数据源
val kafkaDf: DataFrame = spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "linux121:9092")
.option("subscribe", "test_bus_info")
.load()
//3 解决数据
val kafkaValDf: DataFrame = kafkaDf.selectExpr("CAST(value AS STRING)")
// 转为 ds
val kafkaDs: Dataset[String] = kafkaValDf.as[String]
// 解析出经纬度数据,写入 redis
// 封装为一个 case class 不便后续获取指定字段的数据
val busInfoDs: Dataset[BusInfo] = kafkaDs.map(BusInfo(_)).filter(_ != null)
// 将数据写入 MySQL 表
busInfoDs.writeStream
.foreach(new JdbcHelper)
.outputMode("append")
.start()
.awaitTermination()}
}
2.4 创立 topic 和从消费者端写入数据
kafka-topics.sh --zookeeper linux121:2181/myKafka --create --topic test_bus_info --partitions 2 --replication-factor 1
kafka-console-producer.sh --broker-list linux121:9092 --topic test_bus_info
吴邪,小三爷,混迹于后盾,大数据,人工智能畛域的小菜鸟。
更多请关注
正文完